分析 (1)根据等边三角形的判定得出△ABC是等边三角形,即可得出∠ABC的度数;
(2)根据BE=FE得出∠F=∠CEF=30°,再等边三角形的性质得出∠EBC=30°,即可证明;
(3)过E点作EG⊥BC,根据三角形面积解答即可.
解答 解:(1)∵BE⊥AC于E,E是AC的中点,
∴△ABC是等腰三角形,即AB=BC,
∵AB=AC,
∴△ABC是等边三角形,
∴∠ABC=60°;
(2)∵CF=CE,
∴∠F=∠CEF,
∵∠ACB=60°=∠F+∠CEF,
∴∠F=30°,
∵△ABC是等边三角形,BE⊥AC,
∴∠EBC=30°,
∴∠F=∠EBC,
∴BE=EF;
(3)过E点作EG⊥BC,如图:![]()
∵BE⊥AC,∠EBC=30°,AB=BC=2,
∴BE=$\sqrt{3}$,CE=1=CF,
在△BEC中,EG=$\frac{CE•BE}{BC}=\frac{\sqrt{3}}{2}$,
∴${S}_{△ECF}=\frac{1}{2}×1×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}$.
点评 此题考查了等边三角形的判定与性质,等腰直角三角形的性质,以及含30度直角三角形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com