【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为70
(1)请写出AB的中点M对应的数
(2)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请你求出C点对应的数
(3)若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数.
【答案】
(1)解:M点对应的数是(﹣10+70)÷2=30
(2)解:∵A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为70,
∴AB=70+10=80,
设t秒后P、Q相遇,
∴3t+2t=80,解得t=16;
∴此时点Q走过的路程=3×16=48,
∴此时C点表示的数为﹣10+48=38.
答:C点对应的数是38
(3)解:相遇前:(80﹣35)÷(2+3)=9(秒),
相遇后:(35+80)÷(2+3)=23(秒).
则经过9秒或23秒,2只电子蚂蚁在数轴上相距35个单位长度,9秒对应的数为17,23秒对应的数为59
【解析】(1)求﹣10与70和的一半即是M对应的数;(2)先求出AB的长,再设t秒后P、Q相遇即可得出关于t的一元一次方程,求出t的值,可求出P、Q相遇时点Q移动的距离,进而可得出C点对应的数;(3)分为2只电子蚂蚁相遇前相距35个单位长度和相遇后相距35个单位长度,相遇前:(80﹣35)÷(2+3)=9(秒),相遇后:(35+80)÷(2+3)=23(秒).
【考点精析】解答此题的关键在于理解数轴的相关知识,掌握数轴是规定了原点、正方向、单位长度的一条直线.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx经过点A(﹣3,4),直线l与x轴相交于点B,与∠AOB的平分线相交于点C,直线l的解析式为y=kx﹣5k(k≠0),BC=OB.
(1)若点C在此抛物线上,求抛物线的解析式;
(2)在(1)的条件下,过点A作y轴的平行线,与直线l相交于点D,设P为抛物线上的一个动点,连接PA、PD,当时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与关于直线成轴对称的△A′B′C′;
(2)线段CC′被直线 ;
(3)△ABC的面积为 ;
(4)在直线上找一点P,使PB+PC的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,两个全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中点B和点D重合,点F在BC上,将△DEF沿射线BC平移,设平移的距离为x,平移后的图形与△ABC重合部分的面积为y,y关于x的函数图象如图2所示(其中0≤x≤m,m<x≤3,3<x≤4时,函数的解析式不同)
(1)填空:BC的长为 ;
(2)求y关于x的函数关系式,并写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】洋洋有4张卡片写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?
(3)将这4张卡片上的数字用学过的运算方法,使结果为24.写出运算式子(一种即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com