精英家教网 > 初中数学 > 题目详情
4.如图,在等边△ABC中,D是BC上任一点,延长AD至E,使AE=AB,作∠BAE的平分线交△ABC的高BF于O点,求∠AEO的度数.

分析 先利用“SAS”证明△ABO≌△AEO,得到∠ABO=∠AEO,再根据等边三角形的性质得∠ABF=30°,所以∠AEO=30°.

解答 解:∵OA平分∠BAE,
∴∠BAO=∠EAO,
在△ABO和△AEO中
$\left\{\begin{array}{l}{AB=AE}\\{∠BAO=∠EAO}\\{AO=AO}\end{array}\right.$,
∴△ABO≌△AEO,
∴∠ABO=∠AEO,
∵BF为等边△ABC的高,
∴BF平分∠ABC,
∴∠ABF=30°,
∴∠AEO=30°.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.也考查了等边三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.方程2x-1=0的解是(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,点E,F在BC上,AF,DE相交于点G,H为EF中点,BE=CF,AB=DC,∠B=∠C,判断△MEF形状,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图.已知∠ACB=90°,AD平分∠BAC交BC于D,DE⊥AB于E,BD=DF交CA的延长线于F点,求证:BE=AE+AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在等腰三角形ABC的腰AC上取一点D,腰AB的延长线上取一点E,使CD=BE,交BC于M,探索能得到的结论,并证明.
解:结论是DM=EM.
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,观察图(1)中三棱柱有5个面,6个顶点,9条棱;四棱柱有6个面,8个顶点,12条棱;五棱柱有7个面,10个顶点,15条棱…由此推得
(1)十棱柱有12个面,20个顶点,30条棱.
(2)n棱柱的面为x,顶点为y,棱为z,则x,y,z的关系是怎样的?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求出AB的长度;
(2)用含有t的式子表示AP和BQ;
(3)当t为何值时,△APQ与△AOB相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,二次函数y=ax2+bx+6(a≠0)的图象交y轴于C点,交x轴于A,B两点(点A在点B的左侧),tan∠CAB=3,tan∠CBA=1,
(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当m为何值时,△CDQ面积S最大,并求出最大值.
(3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且MN=$\sqrt{2}$,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,一次函数y=kx+b的图象经过点A(0,2),点B(1,0),则不等式kx+b<0的解集为x>1.

查看答案和解析>>

同步练习册答案