【题目】如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足+(n﹣12)2=0.
(1)求直线AB的解析式及C点坐标;
(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
【答案】(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(,)
【解析】
(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
(2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;
(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
解:(1)∵+(n﹣12)2=0,
∴m=6,n=12,
∴A(6,0),B(0,12),
设直线AB解析式为y=kx+b,
则有,解得,
∴直线AB解析式为y=-2x+12,
∵直线AB过点C(a,a),
∴a=-2a+12,∴a=4,
∴点C坐标(4,4).
(2)过点C作CD⊥AB交x轴于点D,如图1所示,
设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,
∴直线CD解析式为y=x+2,
∴点D坐标(-4,0).
(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
图2
∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,
∵×(-)=-1,
∴直线CE⊥CF,
∵EC=2,CF=2,
∴EC=CF,
∴△FCE是等腰直角三角形,
∴∠FEC=45°,
∵直线FE解析式为y=-5x-2,
由解得,
∴点P的坐标为().
科目:初中数学 来源: 题型:
【题目】根据语句画图,并回答问题,如图,∠AOB内有一点P.
(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D.
(2)写出图中与∠CPD互补的角 .(写两个即可)
(3)写出图中∠O相等的角 .(写两个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是与弦所围成的图形的内部的一定点,是弦上一动点,连接并延长交于点,连接.已知,设,两点间的距离为 ,,两点间的距离为,,两点间的距离为.
小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.
下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值;
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点(,),(,),并画出函数,的图象;
(3)结合函数图象,解决问题:当为等腰三角形时,的长度约为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知与成正比例,且时,.
(1)求与的函数关系式;
(2)当时,求的值;
(3)将所得函数图象平移,使它过点(2, -1).求平移后直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.
(1)求证:AE=DF.
(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
(3)如图3,连接CG.若CG=BC,则AF:FB的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上的点M,N表示的数分别是m,n,点M在表示0,1的两点(不包括这两点)之间移动,点N在表示-1,-2的两点(不包括这两点)之间移动,则下列判断正确的是( )
A.的值一定小于0
B.的值一定小于2
C.的值可能比2000大
D.的值不可能比2000大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究与发现:如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D在底边BC上,AE=AD,连结DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC (点B、C除外) 上运动时,试猜想并探究∠BAD与∠CDE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.
(1)当t=秒时,点Q的坐标是 ;
(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;
(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是_____ (写序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com