精英家教网 > 初中数学 > 题目详情
6.如图,在等边△ABC中,M为BC边上的中点,D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)填空:若D与M重合时(如图1)∠CBE=30度;
(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;
(3)在(1)的条件下,若AB=6,试求CE的长.

分析 (1)先由已知条件得出BD=CD,再由△CDE是等边三角形,得出∠CDE=60°,CD=DE,那么BD=DE,根据等边对等角得到∠BED=∠DBE,再利用三角形外角的性质得出∠BED+∠DBE=∠CDE=60°,从而求出∠DBE=30°,即∠CBE=30°;
(2)先利用SAS证明△ACD≌△BCE,得出∠CAD=∠CBE,再根据等腰三角形三线合一的性质求出∠CAD=$\frac{1}{2}$∠BAC=30°,那么∠CBE=30°;
(3)根据等边三角形的性质以及中点的定义得出CE=CD=$\frac{1}{2}$BC=$\frac{1}{2}$AB=3.

解答 解:(1)如图1.
∵在等边△ABC中,M为BC边上的中点,D与M重合,
∴BD=CD,
∵△CDE是等边三角形,
∴∠CDE=60°,CD=DE,
∴BD=DE,
∴∠BED=∠DBE,
又∵∠BED+∠DBE=∠CDE=60°,
∴∠DBE=30°,即∠CBE=30°;
故答案为30;

(2)(1)中结论成立.理由如下:
如图2.
∵△ABC和△CDE均为等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD+∠DCB=∠DCB+∠BCE=60°,
∴∠ACD=∠BCE.
在△ACD与△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴∠CAD=∠CBE,
∵在等边△ABC中,M是BC中点.
∴∠CAD=$\frac{1}{2}$∠BAC=30°,
∴∠CBE=30°;

(3)如图1.
∵在等边△ABC中,AB=6,
∴BC=AB=6.
∵在等边△ABC中,M为BC边上的中点,D与M重合,
∴CD=BD=$\frac{1}{2}$BC=3,
∵△CDE是等边三角形,
∴CE=CD=3.

点评 此题考查了全等三角形的判定与性质、等边三角形的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.计算下列各题
(1)$\sqrt{16}$+$\root{3}{-27}$+3$\sqrt{3}$-$\sqrt{(-3)^{2}}$
(2)$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$
(3)$\frac{\sqrt{27}+\sqrt{3}}{\sqrt{3}}$-$\frac{\sqrt{6}×\sqrt{3}}{\sqrt{2}}$        
(4)(2$\sqrt{3}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.平行四边形ABCD中,若AB=BC,则四边形ABCD一定是(  )
A.矩形B.菱形C.正方形D.梯形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.上等米每千克售价为x元,次等米每千克售价为y元,取上等米5千克和次等米6千克,一共需要付(  )元钱.
A.x+yB.5x+6yC.11(x+y)D.6x+5y

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.计算:已知2x+5y-5=0,则4x•32y的值是32.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列图形,不是轴对称的是(  )
A.有两个角相等的三角形B.有一个角等于45°的直角三角形
C.三个内角都相等的三角形D.有一个角等于30°的直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知一元二次方程2x2+x-5=0的两根分别是x1,x2,则x12+x22的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{21}{4}$D.$\frac{21}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.以下列各组线段为边作三角形,能构成直角三角形的是(  )
A.6,5,4B.1,$\sqrt{2}$,$\sqrt{3}$C.4,19,20D.5,8,10

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件不能是(  )
A.BE=CEB.∠B=∠CC.AB=ACD.∠BAE=∠CAE

查看答案和解析>>

同步练习册答案