精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=
4
5

(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.
分析:(1)过点A作AD⊥x轴于D点,由sin∠AOE=
4
5
,OA=5,根据正弦的定义可求出AD,再根据勾股定理得到DO,即得到A点坐标(-3,4),把A(-3,4)代入y=
m
x
,确定反比例函数的解析式为y=-
12
x
;将B(6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b(k≠0),求出k和b.
(2)先令y=0,求出C点坐标,得到OC的长,然后根据三角形的面积公式计算△AOC的面积即可.
解答:精英家教网解:(1)过点A作AD⊥x轴于D点,如图,
∵sin∠AOE=
4
5
,OA=5,
∴sin∠AOE=
AD
OA
=
AD
5
=
4
5

∴AD=4,
∴DO=
52-42
=3,
而点A在第二象限,
∴点A的坐标为(-3,4),
将A(-3,4)代入y=
m
x
,得m=-12,
∴反比例函数的解析式为y=-
12
x

将B(6,n)代入y=-
12
x
,得n=-2;
将A(-3,4)和B(6,-2)分别代入y=kx+b(k≠0),得
-3k+b=4
6k+b=-2

解得
k=-
2
3
b=2

∴所求的一次函数的解析式为y=-
2
3
x+2;

(2)在y=-
2
3
x+2中,令y=0,
即-
2
3
x+2=0,
解得x=3,
∴C点坐标为(3,0),即OC=3,
∴S△AOC=
1
2
•AD•OC=
1
2
•4•3=6.
点评:本题考查了点的坐标的求法和点在图象上,点的横纵坐标满足图象的解析式;也考查了正弦的定义、勾股定理以及三角形面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案