1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶¥µãDÔÚµÚÒ»ÏóÏÞµÄÅ×ÎïÏßy=-x2-kx-£¨k-1£©ÓëxÖá½»ÓÚA£¨x1£¬0£©¡¢B£¨x2£¬0£©Á½µã£¨µãAÔÚµãBµÄ×ó²à£¬OA£¼OB£©£¬½»y ÖáÓÚµãC£¬ÇÒx${\;}_{1}^{2}$+x${\;}_{2}^{2}$=10£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©Éè¡÷ABCµÄÍâ½ÓÔ²Ô²ÐÄΪP£¬¹ýPµÄÖ±ÏßÓëÖ±ÏßAC½»ÓÚQ£¬ÓëxÖá½»ÓÚR£¬Èô¡÷ABCÓë¡÷ARQÏàËÆ£¬ÇóRµÄ×ø±ê£»
£¨3£©½«´ËÅ×ÎïÏß´ÓµãBÑØÉäÏßBD·½ÏòÆ½ÒÆ£¨Ê¹µÃ¶¥µãDʼÖÕÔÚBDÉÏ£©£¬ÈôÆ½ÒÆºóµÄÅ×ÎïÏßÓëÖ±ÏßBD½»ÓÚµãN¡¢K£¬ÔÚyÕý°ëÖáÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷MNKΪµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Ö±½Óд³öËùÓÐÂú×ãÌõ¼þµÄµãMµÄ×ø±ê£®

·ÖÎö £¨1£©ÀûÓÃÅ×ÎïÏß¶ÔÓ¦µÄÒ»Ôª¶þ´Î·½³ÌÁ½¸ùÖ®¼ä¹ØÏµÇó³öKÖµ£¬´ú»ØÅ×ÎïÏߣ¬ÑéËãÂú×ã¶¥µãDÔÚµÚÒ»ÏóÏÞ¼´¿ÉÇó³öÅ×ÎïÏß½âÎöʽ£»
£¨2£©ÀûÓÃÈý½ÇÐÎÍâÐÄÐÔÖÊÇó³öPµÄ×ø±ê£¬Éè³öPQÖ±Ïß½âÎöʽ£¬ÁªÁ¢·½³Ì×飬Çó³öµãP¡¢Q×ø±ê£¬ÀûÓÃÁ½µã¼ä¾àÀ빫ʽ£¬Çó³öÏàËÆÈý½ÇÐζÔÓ¦Ï߶εij¤£¬·ÖÀàÌÖÂÛÏàËÆÈý½ÇÐΣ¬¼´¿ÉÇó³öµãRµÄ×ø±ê£»
£¨3£©Çó³öÖ±ÏßBD½âÎöʽ¼°Ïß¶ÎBD³¤¶È£¬ÓÉÌâÒâÖªBD=KN£¬Éè³öµãNµãK×ø±ê£¬ÀûÓõÈÑüÈý½ÇÐÎÐÔÖÊÇó³öµãM×ø±ê£»

½â´ð ½â£º£¨1£©Áîy=0£¬
-x2-kx-£¨k-1£©=0£¬
¡à£¨x-1£©[x+£¨k-1£©]=0£¬
¡àx=1»òx=1-k£¬
¡ßx${\;}_{1}^{2}$+x${\;}_{2}^{2}$=10£¬
¡à1+£¨1-k£©2=10£®
½âµÃ£ºk=4£¬»òk=-2£¬
µ±k=4£¬Å×ÎïÏßΪy=-x2-4x-3£¬
¶¥µãDºá×ø±êΪ-2£¬²»ÔÚµÚÒ»ÏóÏÞ£¬ÉáÈ¥£¬
µ±k=-2ʱ£¬Å×ÎïÏß½âÎöʽΪ£ºy=-x2+2x+3£¬
¶¥µã×ø±êD£¨1£¬4£©£¬
¡àÅ×ÎïÏß½âÎöʽΪ£ºy=-x2+2x+3£®

£¨2£©ÓÉ£¨1£©µÃ£ºA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡àÏß¶ÎAB´¹Ö±Æ½·ÖÏßΪֱÏßx=1£¬
Ïß¶ÎBCµÄ´¹Ö±Æ½·ÖÏßΪֱÏßy=x£¬
ÁªÁ¢µÃP£¨1£¬1£©£¬
Ö±ÏßAC½âÎöʽΪ£ºy=3x+3£¬
ÉèÖ±ÏßPQ£ºy=kx+b£¬´úÈ루1£¬1£©£¬
µÃy=kx+1-k£¬
Áîy=0£¬x=$\frac{k-1}{k}$£¬
¡àR£¨$\frac{k-1}{k}$£¬0£©
ÁªÁ¢£ºÖ±ÏßACºÍQR
ÇóµÃQ£¨$\frac{2+k}{k-3}$£¬$\frac{6k-3}{k-3}$£©£¬
ÀûÓù´¹É¶¨ÀíÇóµÃ£º
AC=$\sqrt{10}$£¬AB=4£¬AQ=$\sqrt{£¨-1-\frac{2+k}{k-3}£©^{2}+£¨\frac{6k-3}{k-3}£©^{2}}$£©£¬AR=$\frac{k-1}{k}$+1
µ±¡÷ARQ¡×¡÷ABCʱ£¬
$\frac{AC}{AQ}$=$\frac{AB}{AR}$£¬½âµÃ£ºk=-1£¬
¡àR£¨2£¬0£©£®
µ±¡÷ARQ¡×¡÷ACBʱ£¬
$\frac{AC}{AR}=\frac{AB}{AQ}$£¬½âµÃk=-2£¬
¡àR£¨$\frac{3}{2}$£¬0£©£®
¡àRµÄ×ø±êΪR£¨$\frac{3}{2}$£¬0£©»òR£¨2£¬0£©£®

£¨3£©ÉèÖ±ÏßBD½âÎöʽΪy=kx+b£¬
¡ßB£¨3£¬0£©£¬D£¨1£¬4£©£¬
´úÈëÖ±Ïß½âÎöʽµÃ£ºk=-2£¬b=6£¬
¡àÖ±ÏßBD½âÎöʽΪy=-2x+6£¬
BD=$\sqrt{{4}^{2}+£¨3-1£©^{2}}$=2$\sqrt{5}$£¬
ÉèµãM£¨0£®b£©£¬
µ±BM=BD=2$\sqrt{5}$£¬
¡àOM=$\sqrt{B{M}^{2}-O{B}^{2}}$=$\sqrt{20-9}$=$\sqrt{11}$£¬
¡àM£¨0£¬$\sqrt{11}$£®
µ±BD=BMʱ£¬¸ù¾ÝÅ×ÎïÏß¶Ô³ÆÐÔ£¬µãMÔÚyÖḺ°ëÖᣬ²»·ûºÏÌâÒ⣮
µ±BM=DMʱ£¬
$\sqrt{9+{b}^{2}}$=$\sqrt{1+£¨4-b£©^{2}}$£¬
½âµÃ£ºb=1£¬
¡àM£¨0£¬1£©£®
×ÛÉÏËùÊö£¬µãM×ø±êΪ£¨0£¬1£©»ò£¨0£¬$\sqrt{11}$£©£®

µãÆÀ ÌâÄ¿¿¼²éµÄ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Í¨¹ý¶Ô¶þ´Îº¯ÊýÒ»´Îº¯Êý½âÎöʽµÄÇó½â£¬½áºÏÏàËÆÈý½ÇÐΣ¬¿¼²éѧÉú½â¾ö×ÛºÏÎÊÌâµÄÄÜÁ¦£¬ÌâÄ¿ÕûÌå½ÏÄÑ£¬ÊôÓÚѹÖáÌ⣬ÊʺÏѧÉúÕë¶ÔÖп¼Ñ¹ÖáѵÁ·£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬µãDÊÇ¡ÑOÉÏÒ»µã£¬µãCÊÇ»¡ADµÄÖе㣬Á¬½ÓAC¡¢BD¡¢AD¡¢BC½»ÓÚµãQ£®
£¨1£©Èô¡ÏDAB=40¡ã£¬Çó¡ÏCADµÄ´óС£»
£¨2£©ÈôCA=10£¬CB=16£¬ÇóCQµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£º¸÷ͼÐÎÖеÄÈý¸öÊýÖ®¼ä¾ù¾ßÓÐÏàͬµÄ¹æÂÉ£¬¸ù¾Ý´Ë¹æÂÉ£¬Í¼ÐÎÖÐMÓëm£¬nµÄ¹ØÏµÊÇM=m¡Á£¨n+1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®·½¸ñÖ½ÖÐÿ¸öСÕý·½Ðεı߳¤¶¼ÊÇ1¸öµ¥Î»³¤¶È£¬¡÷ABCÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼËùʾ£®
£¨1£©½«¡÷ABCÈÆµãO˳ʱÕëÐýת90¡ã£¬Çë»­³öÐýתºóµÄ¡÷A1B1C1£®
£¨2£©ÇóµãBÔÚÐýת¹ý³ÌÖÐËù¾­¹ýµÄ·¾¶³¤£¨½á¹û±£Áô¦Ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ¡°½âÖ±½ÇÈý½ÇÐΡ±Ò»ÕÂÎÒÃÇѧϰµ½¡°Èñ½ÇµÄÕýÏÒ¡¢ÓàÏÒ¡¢ÕýÇж¼ÊÇÈñ½ÇµÄº¯Êý£¬Í³³ÆÎªÈñ½ÇÈý½Çº¯Êý¡±£®
СÁ¦¸ù¾Ýѧϰº¯ÊýµÄ¾­Ñ飬¶ÔÈñ½ÇµÄÕýÏÒº¯Êý½øÐÐÁË̽¾¿£®ÏÂÃæÊÇСÁ¦µÄ̽¾¿¹ý³Ì£¬Çë²¹³äÍê³É£º
£¨1£©º¯ÊýµÄ¶¨ÒåÊÇ£º¡°Ò»°ãµØ£¬ÔÚÒ»¸ö±ä»¯µÄ¹ý³ÌÖУ¬ÓÐÁ½¸ö±äÁ¿xºÍy£¬¶ÔÓÚ±äÁ¿xµÄÿһ¸öÖµ£¬±äÁ¿y¶¼ÓÐΨһȷ¶¨µÄÖµºÍËü¶ÔÓ¦£¬ÎÒÃǾͰÑx³ÆÎª×Ô±äÁ¿£¬y³ÆÎªÒò±äÁ¿£¬yÊÇxµÄº¯Êý¡±£®Óɺ¯Êý¶¨Òå¿ÉÖª£¬Èñ½ÇµÄÕýÏÒº¯ÊýµÄ×Ô±äÁ¿ÊÇÈñ½ÇµÄ½Ç¶È£¬Òò±äÁ¿ÊÇÕýÏÒÖµ£¬×Ô±äÁ¿µÄȡֵ·¶Î§ÊÇ´óÓÚ0¡ãÇÒСÓÚ90¡ã£®
£¨2£©ÀûÓÃÃèµã·¨»­º¯ÊýµÄͼÏó£®Ð¡Á¦ÏÈÉÏÍø²éµ½ÁËÕûÈñ½ÇµÄÕýÏÒÖµ£¬ÈçÏ£º
sin1¡ã=0.01745240643728351   sin2¡ã=0.03489949670250097   sin3¡ã=0.05233595624294383
sin4¡ã=0.0697564737441253    sin5¡ã=0.08715574274765816   sin6¡ã=0.10452846326765346
sin7¡ã=0.12186934340514747   sin8¡ã=0.13917310096006544   sin9¡ã=0.15643446504023087
sin10¡ã=0.17364817766693033  sin11¡ã=0.1908089953765448   sin12¡ã=0.20791169081775931
sin13¡ã=0.22495105434386497  sin14¡ã=0.24192189559966773  sin15¡ã=0.25881904510252074
sin16¡ã=0.27563735581699916  sin17¡ã=0.2923717047227367   sin18¡ã=0.3090169943749474
sin19¡ã=0.3255681544571567   sin20¡ã=0.3420201433256687   sin21¡ã=0.35836794954530027
sin22¡ã=0.374606593415912    sin23¡ã=0.3907311284892737   sin24¡ã=0.40673664307580015
sin25¡ã=0.42261826174069944  sin26¡ã=0.4383711467890774   sin27¡ã=0.45399049973954675
sin28¡ã=0.4694715627858908   sin29¡ã=0.48480962024633706   sin30¡ã=0.5000000000000000
sin31¡ã=0.5150380749100542   sin32¡ã=0.5299192642332049   sin33¡ã=0.544639035015027
sin34¡ã=0.5591929034707468   sin35¡ã=0.573576436351046     sin36¡ã=0.5877852522924731
sin37¡ã=0.6018150231520483   sin38¡ã=0.6156614753256583    sin39¡ã=0.6293203910498375
sin40¡ã=0.6427876096865392   sin41¡ã=0.6560590289905073    sin42¡ã=0.6691306063588582
sin43¡ã=0.6819983600624985   sin44¡ã=0.6946583704589972    sin45¡ã=0.7071067811865475
sin46¡ã=0.7193398003386511   sin47¡ã=0.7313537016191705    sin48¡ã=0.7431448254773941
sin49¡ã=0.7547095802227719   sin50¡ã=0.766044443118978     sin51¡ã=0.7771459614569708
sin52¡ã=0.7880107536067219   sin53¡ã=0.7986355100472928    sin54¡ã=0.8090169943749474
sin55¡ã=0.8191520442889918   sin56¡ã=0.8290375725550417    sin57¡ã=0.8386705679454239
sin58¡ã=0.848048096156426    sin59¡ã=0.8571673007021122    sin60¡ã=0.8660254037844386
sin61¡ã=0.8746197071393957   sin62¡ã=0.8829475928589269    sin63¡ã=0.8910065241883678
sin64¡ã=0.898794046299167    sin65¡ã=0.9063077870366499    sin66¡ã=0.9135454576426009
sin67¡ã=0.9205048534524404   sin68¡ã=0.9271838545667873    sin69¡ã=0.9335804264972017
sin70¡ã=0.9396926207859083   sin71¡ã=0.9455185755993167    sin72¡ã=0.9510565162951535
sin73¡ã=0.9563047559630354   sin74¡ã=0.9612616959383189    sin75¡ã=0.9659258262890683
sin76¡ã=0.9702957262759965   sin77¡ã=0.9743700647852352    sin78¡ã=0.9781476007338057
sin79¡ã=0.981627183447664    sin80¡ã=0.984807753012208     sin81¡ã=0.9876883405951378
sin82¡ã=0.9902680687415704   sin83¡ã=0.992546151641322     sin84¡ã=0.9945218953682733
sin85¡ã=0.9961946980917455   sin86¡ã=0.9975640502598242    sin87¡ã=0.9986295347545738
sin88¡ã=0.9993908270190958   sin89¡ã=0.9998476951563913
¢ÙÁÐ±í£¨Ð¡Á¦Ñ¡È¡ÁË10¶ÔÊýÖµ£©£»
x¡­¡­
y¡­¡­
¢Ú½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¨Á½×ø±êÖá¿ÉÊÓÊýÖµÐèÒª·Ö±ðѡȡ²»Í¬³¤¶È×öΪµ¥Î»³¤¶È£©£»
¢ÛÃèµã£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ãè³öÁËÒÔÉϱíÖи÷¶Ô¶ÔÓ¦ÖµÎª×ø±êµÄµã£»
¢ÜÁ¬Ïߣ®¸ù¾ÝÃè³öµÄµã£¬»­³ö¸Ãº¯ÊýµÄͼÏó£»
£¨3£©½áºÏº¯ÊýµÄͼÏó£¬Ð´³ö¸Ãº¯ÊýµÄÒ»ÌõÐÔÖÊ£ºyËæx£¨0¡ã£¼x£¼90¡ã£©µÄÔö´ó¶øÔö´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®2a+2b=5abB£®-2m+2m=0C£®5x2-x=5xD£®4p3-p2=3p

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ÆË㣮
£¨1£©2+£¨-4£©-6+8    
£¨2£©6¡Â1$\frac{1}{2}$¡Á4¡Â£¨-8£©
£¨3£©£¨-$\frac{1}{7}$+$\frac{3}{4}$-$\frac{1}{2}$£©¡Á28
£¨4£©£¨-3£©2-|-6|+3    
£¨5£©23-£¨-3£©2¡Á£¨-$\frac{1}{3}$£©+52¡Â|-1-4|
£¨6£©£¨$\frac{1}{2}$-1£©¡Á£¨$\frac{1}{3}$-1£©¡Á£¨$\frac{1}{4}$-1£©¡Á¡­¡Á£¨$\frac{1}{2012}$-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚÕýÎå±ßÐÎABCDEÖУ¬¶Ô½ÇÏßAD¡¢ACÓëEB·Ö±ð½»ÓÚµãM¡¢N£®
£¨1£©ÇóÖ¤£º¡÷ABE¡Õ¡÷EDA£»
£¨2£©ÇóÖ¤£ºµãMÊÇADµÄ»Æ½ð·Ö¸îµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¾ÅÄê¼¶£¨1£©°à½ªÁáͬѧijÖÜ7Ìì½øÐÐ×ÔÖ÷¸´Ï°Ê±¼ä£¨µ¥Î»£º·ÖÖÓ£©ÈçÏ£º50£¬60£¬80£¬90£¬60£¬70£¬60£®Õâ×éÊý¾ÝµÄÖÚÊýÊÇ£¨¡¡¡¡£©
A£®90B£®80C£®70D£®60

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸