【题目】聊城市某党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用600元购买乙种树苗的棵数恰好与用480元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过2000元,那么他们最多可购买多少棵乙种树苗?
【答案】(1) 40元, 50元;(2) 14棵.
【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用600元购买乙种树苗的棵数恰好与用480元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过2000元,列出不等式求解即可.
解:(1)设甲种树苗每棵的价格是元,则乙种树苗每棵的价格是(+10)元,依题意有
,
解得:x=40.
经检验,x=40是原方程的解,且符合题意.
∴x+10=40+10=50.
答:甲种树苗每棵的价格是40元,乙种树苗每棵的价格是50元.
(2)设他们可购买y棵乙种树苗,依题意有
40×(1﹣10%)(50﹣y)+50y≤2000,
解得y≤,
∵y为整数,
∴y最大为14.
答:他们最多可购买14棵乙种树苗.
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知将反比例函数(x<0),沿y轴翻折得到反比例函数(x>0),一次函数y=ax+b与交于A(1,m),B(4,n)两点;
(1)求反比例函数y2和一次函数y=ax+b的解析式;
(2)连接OA,过B作BC⊥x轴,垂足为C,点P是线段AB上一点,若直线OP将四边形OABC的面积分成1:2两部分,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,抛物线经过点,且与轴交于,两点,与轴交于点,连接,,.
该抛物线的解析式;
如图,点是所求抛物线上的一个动点,过点作轴的垂线,分别交轴于点,交直线于点,设点的横坐标为,当时,过点作,交轴于点,连接,则为何值时,的面积取得最大值,并求出这个最大.
如图,中,,,,直角边在轴上,且与重合,当沿轴从右向左以每秒个单位长度的速度移动时,设与重叠部分的面积为,求当时,移动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,AB=4,∠DAB=120°,动点P从点A出发,以每秒2个单位的速度沿AC向终点C运动.过P作PE⊥AB交AB于点E,作PF⊥AD交AD于点F,设四边形AEPF与△ABD的重叠部分的面积为S,点P的运动时间为t.
(1)用含t的代数式表示线段BE的长;
(2)当点P与点O重合时,求t的值;
(3)求S与t之间的函数关系式;
(4)在点P出发的同时,有一点Q从点C出发,以每秒6个单位的速度沿折线C﹣D﹣A﹣B运动,设点Q关于AC的对称点是Q',直接写出PQ'与菱形ABCD的边垂直时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是( )
A.119B.289C.77或119D.119或289
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一条直线经过点C(﹣1,0)点D(0,﹣2),将这条直线向右平移与x轴、y轴分别交于点B、点A,若DB=DC,则直线AB的函数解析式为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com