【题目】一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12,用这块材料剪出一个矩形CDEF,其中D、E、F分别在BC、AB、AC上. ![]()
(1)若设AE=x,则AF=;(用含x的代数式表示)
(2)要使剪出的矩形CDEF的面积最大,点E应选在何处?
【答案】
(1)
x
(2)解:∵四边形CDEF是矩形,
∴∠AFE=90°,
∵∠A=30°,
∴EF=
AE=
x,
在Rt△ABC中,∠C=90°,AB=12,
∴BC=
AB=6,
根据勾股定理得:AC=
=6
,
∴CF=AC﹣AF=6
﹣
x,
∴S矩形CDEF=CFEF=
x(6
﹣
x)=﹣
(x﹣6)2+9
,
∴当x=6时,矩形CDEF的面积最大,
即当点E为AB的中点时,矩形CDEF的面积最大.
![]()
【解析】解:(1)在Rt△ABC中,∠A=30°,∠C=90°,AE=x, ∴EF=
x,根据勾股定理得:AF=
x;所以答案是:
x;
【考点精析】根据题目的已知条件,利用二次函数的最值和矩形的性质的相关知识可以得到问题的答案,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;矩形的四个角都是直角,矩形的对角线相等.
科目:初中数学 来源: 题型:
【题目】只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是( )
A.
,
B.
,![]()
C.
,
D.
,![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地. ![]()
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2 , 为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) ![]()
A.函数有最小值
B.对称轴是直线x= ![]()
C.当x<
,y随x的增大而减小
D.当﹣1<x<2时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.
(1)请你根据上述的规律写出下一组勾股数:11、________、________;
(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=
,12=
,24=
……,于是他很快表示了第二数为
,则用含a的代数式表示第三个数为________;
(3)用所学知识证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com