精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(
A.函数有最小值
B.对称轴是直线x=
C.当x< ,y随x的增大而减小
D.当﹣1<x<2时,y>0

【答案】D
【解析】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意; B、由图象可知,对称轴为x= ,正确,故B选项不符合题意;
C、因为a>0,所以,当x< 时,y随x的增大而减小,正确,故C选项不符合题意;
D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.
故选:D.
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,EBC的中点,将△ABE沿直线AE折叠,B落在B′点处,连接B′C

(1)求证:AE∥B′C;

(2)AB=4,BC=6,求线段B′C的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,…,如此作下去,则△B2014A2015B2015的顶点A2015的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形 OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点C 的坐标为( )

A. (﹣1,) B. (,1) C. ( ,3) D. ( ,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC、AD.
(1)求证:OC=AD;
(2)求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12,用这块材料剪出一个矩形CDEF,其中D、E、F分别在BC、AB、AC上.
(1)若设AE=x,则AF=;(用含x的代数式表示)
(2)要使剪出的矩形CDEF的面积最大,点E应选在何处?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).
(1)求此抛物线的解析式;
(2)求此抛物线的对称轴和顶点坐标;
(3)设抛物线的顶点为C,试求△CAO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是△ABC的边BC上任一点,已知AB=6,AD=3,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为(
A.a
B.
C.
D. a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(

A.①④
B.②④
C.①②③
D.①②③④

查看答案和解析>>

同步练习册答案