精英家教网 > 初中数学 > 题目详情

【题目】如图,D是△ABC的边BC上任一点,已知AB=6,AD=3,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为(
A.a
B.
C.
D. a

【答案】C
【解析】解:∵∠DAC=∠B,∠C=∠C, ∴△ACD∽△BCA,
∵AB=6,AD=3,
∴△ACD的面积:△ABC的面积为1:4,
∴△ACD的面积:△ABD的面积=1:3,
∵△ABD的面积为a,
∴△ACD的面积为 a,
故选C.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(
A.函数有最小值
B.对称轴是直线x=
C.当x< ,y随x的增大而减小
D.当﹣1<x<2时,y>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课堂上学习了勾股定理后,知道勾三、股四、弦五.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.

(1)请你根据上述的规律写出下一组勾股数:11、________、________;

(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=,12=,24=……,于是他很快表示了第二数为 ,则用含a的代数式表示第三个数为________;

(3)用所学知识证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算 ﹣(π﹣3)0+(﹣ 1 +| ﹣2|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,AD∥BC,∠C=90°,AB=AD=50,BC=64,连结BD,AE⊥BD垂足为E,
(1)求证:△ABE∽△DCB;
(2)求线段DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1 , 点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2 , 点A1的对应点为点A2

(1)画出△A1B1C1
(2)画出△A2B2C2
(3)求:点A到A2的直线距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.

查看答案和解析>>

同步练习册答案