精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC、AD.
(1)求证:OC=AD;
(2)求OC的长.

【答案】
(1)证明:∵△AOB是边长为2的等边三角形,

∴OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,

又△DCB是由△AOB绕着点B按顺时针方向旋转得到的,

∴△DCB也是边长为2的等边三角形,

∴∠OBA=∠CBD=60°,OB=AB,BC=BD,

又∠OBC=∠OBA+∠ABC=∠CBD+∠ABC=∠ABD,

在△OBC和△ABD中,

∴△OBC≌△ABD(SAS),

∴OC=AD;


(2)解:∵△AOB与△BCD是边长为2的等边三角形,

∴BO=BC,∠DBC=∠BCD=60°,

∴∠BOC=∠BCO=30°,

∴∠OCD=90°.

∵OD=4,CD=2,

∴在Rt△OCD中,由勾股定理,得

OC= = =2


【解析】(1)根据等边三角形的性质,可得OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,根据旋转的性质,可得∠OBC=∠ABD,根据SAS,可得三角形全等,根据全等三角形的性质,可得答案;(2)根据旋转的性质,可得BO=BC,∠DBC=∠BCD=60°,根据等腰三角形的性质,可得∠OCB的度数,根据勾股定理,可得答案.
【考点精析】利用等边三角形的性质对题目进行判断即可得到答案,需要熟知等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】梯形ABCDADBCEAB的中点,过E作两底的平行线交DCF , 则下面结论错误的是(  )
A.EF平分线段AC
B.梯形上下底间任意两点的连线段被EF平分
C.梯形EBCF与梯形AEFD周长之差的绝对值等于梯形两底之差的绝对值
D.梯形EBCF的面积比梯形AEFD的面积大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一条弦分圆周为5:7,这条弦所对的圆周角为(
A.75°
B.105°
C.60°或120°
D.75°或105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是(
A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(
A.函数有最小值
B.对称轴是直线x=
C.当x< ,y随x的增大而减小
D.当﹣1<x<2时,y>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为(
A.130°
B.150°
C.160°
D.170°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.

(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1
(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2 , 并标出B2、C2两点的坐标.

查看答案和解析>>

同步练习册答案