【题目】已知,以为直径的⊙分别交于点,于点,连接,若.
(1)求证:;
(2)若,,求的长.
【答案】(1)证明见解析;(2)
【解析】
(1)由等腰三角形的性质得到∠EDC=∠C,由圆内接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;
(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE∽△CBA后即可求得CD的长.
(1)证明:∵ED=EC,
∴∠EDC=∠C,
∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)
∴∠B=∠C,
∴AB=AC;
(2)如图所示,连接AE,
∵AB为直径,
∴AE⊥BC,
由(1)知AB=AC,
∴BE=CE=BC=,
∵△CDE∽△CBA,
∴,
∴CECB=CDCA,AC=AB=4,
∴,
∴CD=.
科目:初中数学 来源: 题型:
【题目】在数学兴趣小组活动中,小明进行数学探究活动.将大小不同的正方形与正方形按图1位置放置,与在同一条直线上,与在同一条直线上.
(1)小明发现且,请你给出证明;
(2)如图2,小明将正方形绕点转动,当点恰好落在线段上时猜想线段和的位置关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A'B'C'D',此时点B'恰好落在边AD上.
(1)画出旋转后的图形;
(2)连接B'B,若∠AB'B=75°,求旋转角及AB长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,是直角三角形,,点、的横坐标是一元二次方程的两根(),直线与轴交于,点的坐标为.
(1)求直线的函数表达式;
(2)在轴上找一点,连接,使得以点、、为顶点的三角形与相似(不包括全等),并求点的坐标;
(3)在(2)的条件下,点、分别是和上的动点,连接,点、分别从、同时出发,以每秒1个单位长度的速度运动,当点到达点时,两点停止运动,设运动时间为秒,请直接写出几秒时以点、、为顶点的三角形与相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在平面直角坐标系中,直线交坐标轴于A、B两点,过点C(,0)作CD交AB于D,交轴于点E.且△COE≌△BOA.
(1)求B点坐标为 ;线段OA的长为 ;
(2)确定直线CD解析式,求出点D坐标;
(3)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.
①点M移动过程中,线段OM与ON数量关系是否不变,并证明;
②当△OMN面积最小时,求点M的坐标和△OMN面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.
(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;
(2)求证:DF是⊙O的切线;
(3)求证:∠EDF=∠DAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=kx+b(k≠0)与抛物线y=ax2﹣4ax+3a的对称轴交于点A(m,﹣1),点A关于x轴的对称点恰为抛物线的顶点.
(1)求抛物线的对称轴及a的值;
(2)横、纵坐标都是整数的点叫做整点.记直线y=kx+b(k≠0)与抛物线围成的封闭区域(不含边界)为W.
①当k=1时,直接写出区域W内的整点个数;
②若区域W内恰有3个整点,结合函数图象,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.
(1)该商店第一次购进这种水果多少千克?
(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于1240元,则每千克这种水果的标价至少是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com