【题目】在平面直角坐标系xOy中,直线y=kx+b(k≠0)与抛物线y=ax2﹣4ax+3a的对称轴交于点A(m,﹣1),点A关于x轴的对称点恰为抛物线的顶点.
(1)求抛物线的对称轴及a的值;
(2)横、纵坐标都是整数的点叫做整点.记直线y=kx+b(k≠0)与抛物线围成的封闭区域(不含边界)为W.
①当k=1时,直接写出区域W内的整点个数;
②若区域W内恰有3个整点,结合函数图象,求b的取值范围.
科目:初中数学 来源: 题型:
【题目】如图,正方形 ABCD 中,点 E,F 分别在 BC 和 AB 上,BE=3,AF=2,BF=4,将△ BEF 绕点 E 顺时针旋转,得到△GEH,当点 H 落在 CD 边上时,F,H 两点之间的距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程mx2﹣x﹣m+1=0,有以下三个结论:
①当m=0时,方程只有一个实数解;
②当m≠0时,方程有两个不相等的实数解;
③无论m取何值,方程都有一个整数根.
(1)请你判断,这三个结论中正确的有_____(填序号)
(2)证明(1)中你认为正确的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④APAD=CQCB.其中正确的是_____(写出所有正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,则下列说法错误的是( )
A. AB=4
B. ∠ABC=45°
C. 当x>0时,y<﹣3
D. 当x>1时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某同学对一道作业题的解题思路,课堂上师生据此展开了讨论.问题如图,已知A(1,)、B(4,0),∠OAB的平分线AC交x轴于点C,求OC的长.思路:作AD⊥OB,CE⊥AB,CF⊥OA
①A坐标→OD=1,AD=,OA=2→∠AOC=60°;
②A、B坐标→OA=2,OB=4,AB=2→∠OAB=90°;
③AC平分∠OAB→CE=CF;
④S△AOC+S△ABC=S△AOB→AOCF+ABCE=OAAB→CF=3﹣;
⑤综上,Rt△OCF中,OC=﹣2.可以优化吗?
(1)同学们发现不需要证“∠OAB=90°”也能求解,简要说明理由.几位同学提出了不同的思路
①甲说:S△AOC和S△ABC的面积之比既是,又是,从而;
②乙说:在AB边上取点G,使AG=AO,连接CG,可知BG的长即为所求;
③丙说:延长AC交△AOB的外接圆于N,再利用一次函数或相似求出OC.
请你选择其中一种解法,利用图2和已有步骤完成解答.有什么收获?
(2)面积法是图形问题中确定数量关系的有效方法,请利用面积法求解:如图1,⊙O与△ABC的边AC,边BA、BC的延长线AE、CF相切,切点分别为D、E、F.设△ABC的面积为S,BC=a,AC=b,AB=c,请用含S、a、b、c的式子表示⊙O的半径R,直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
【答案】8.7米
【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.
试题解析:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
答:这棵树CD的高度为8.7米.
考点:解直角三角形的应用
【题型】解答题
【结束】
23
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知边长为2的正三角形ABC沿着直线l滚动.
(1)当△ABC滚动一周到△A1B1C1的位置,此时A点运动的路程为 ;约为 ;(精确到0.1,π=3.14…)
(2)设△ABC滚动240°时,C点的位置为C′,△ABC滚动480°时,A点的位置为A′.请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1﹣tanαtanβ),求出∠CAC′+∠CAA′的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com