【题目】如图,已知边长为2的正三角形ABC沿着直线l滚动.
(1)当△ABC滚动一周到△A1B1C1的位置,此时A点运动的路程为 ;约为 ;(精确到0.1,π=3.14…)
(2)设△ABC滚动240°时,C点的位置为C′,△ABC滚动480°时,A点的位置为A′.请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1﹣tanαtanβ),求出∠CAC′+∠CAA′的度数.
【答案】(1)8.37758;8.4;(2)∠CAC′+∠CAA′=30°.
【解析】
(1)由图形可以看出,△ABC滚动的轨迹正好为两个半径为2的三分之一的圆周长;
(2)先求出正三角形的高,再利用三角函数求出tan∠CAC’与tan∠CAA′的值,然后通过等量代换求出∠CAC′+∠CAA′的度数.
(1)当△ABC滚动一周到△A1B1C1的位置,此时A点运动的路径为两个半径为2的三分之一的圆周长,
即A点的路程长为:2××2×3.14×2=8.37758;
约为8.4.
(2)设△ABC滚动240°时,C点的位置为C’,△ABC滚动480°时,A点的位置为A′.
∵正△ABC的边长为2
∴正△ABC的高为
tan∠CAC′=
tan∠CAA′==
所以:由公式tan(α+β)=(tanα+tanβ)÷(1﹣tanαtanβ),
得:tan(∠CAC′+∠CAA′)
=(tan∠CAC′+tan∠CAA′)÷(1﹣tan∠CAC′tan∠CAA′)
=(+)÷(1﹣×)
=.
所以:∠CAC′+∠CAA′=30°.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=kx+b(k≠0)与抛物线y=ax2﹣4ax+3a的对称轴交于点A(m,﹣1),点A关于x轴的对称点恰为抛物线的顶点.
(1)求抛物线的对称轴及a的值;
(2)横、纵坐标都是整数的点叫做整点.记直线y=kx+b(k≠0)与抛物线围成的封闭区域(不含边界)为W.
①当k=1时,直接写出区域W内的整点个数;
②若区域W内恰有3个整点,结合函数图象,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.
(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .
(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的矩形ABCD中,E为AB的中点,有一圆过C、D、E三点,且此圆分别与AD、BC相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:
(甲) 作∠DEC的角平分线L,作DE的中垂线,交L于O点,则O即为所求;
(乙) 连接PC、QD,两线段交于一点O,则O即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )
A. 两人皆正确 B. 两人皆错误
C. 甲正确,乙错误 D. 甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC所对优弧上任意一点(B,C两点除外).
(1)求∠BAC的度数;
(2)求△ABC面积的最大值.
(参考数据: ,,.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用图象法求方程的解,体现了数形结合的方法,它是将方程的解看成两个函数图象交点的横坐标.若关于x的方程x2+a﹣=0(a>0)只有一个整数解,则a的值等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.
(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为_________,抛物线的解析式为_________;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com