精英家教网 > 初中数学 > 题目详情

【题目】如图的矩形ABCD中,EAB的中点,有一圆过CDE三点,且此圆分别与ADBC相交于PQ两点.甲、乙两人想找到此圆的圆心O,其作法如下:

() 作∠DEC的角平分线L,作DE的中垂线,交LO点,则O即为所求;

() 连接PCQD,两线段交于一点O,则O即为所求.

对于甲、乙两人的作法,下列判断何者正确?(  )

A. 两人皆正确 B. 两人皆错误

C. 甲正确,乙错误 D. 甲错误,乙正确

【答案】A

【解析】

根据线段垂直平分线的性质判断甲,根据90°的圆周角所对的弦是直径判断乙.

解:甲,∵EDEC
∴△DEC为等腰三角形,
LCD之中垂线,
O为两中垂线之交点,
OCDE的外心,
O为此圆圆心.
乙,∵∠ADC=90°,∠DCB=90°
PCQD为此圆直径,
PCQD的交点O为此圆圆心,因此甲、乙两人皆正确.
故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④APAD=CQCB.其中正确的是_____(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)

【答案】8.7

【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

试题解析:∵∠CBD=∠A+∠ACB

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°

∴∠A=∠ACB

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:这棵树CD的高度为8.7米.

考点:解直角三角形的应用

型】解答
束】
23

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC在第一象限, ,AB=AC=2,点A在直线上,其中点A的横坐标为1,且AB∥轴,AC∥轴,若双曲线有交点,则k的取值范围是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径、在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10(如示意图,AB10);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A

1)判断直线MN⊙O的位置关系,并说明理由;

2)若OA=4∠BCM=60°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为2的正三角形ABC沿着直线l滚动.

(1)当△ABC滚动一周到△A1B1C1的位置,此时A点运动的路程为   ;约为  (精确到0.1π3.14)

(2)设△ABC滚动240°时,C点的位置为C′,△ABC滚动480°时,A点的位置为A′.请你利用三角函数中正切的两角和公式tan(α+β)(tanα+tanβ)÷(1tanαtanβ),求出∠CAC+CAA′的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为同簇二次函数

1)请写出两个为同簇二次函数的函数;

2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A11),若y1+y2y1同簇二次函数,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,一次函数为常数,)的图像与轴、轴分别相交于点,半径为4的⊙轴正半轴相交于点,与轴相交于点,点在点上方.

1)若直线与弧有两个交点.

①求的度数;

②用含的代数式表示,并直接写出的取值范围;

2)设,在线段上是否存在点,使?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案