【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.
(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.
【答案】(1)相切;(2).
【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.
试题解析:(1)MN是⊙O切线.
理由:连接OC.
∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,
∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切线.
(2)由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在RT△BCO中,OC=OA=4,∠BCO=30°,
∴BO=OC=2,BC=2
∴S阴=S扇形OAC﹣S△OAC=.
科目:初中数学 来源: 题型:
【题目】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.
(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;
图1
(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.
图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(2,0),B(0,4),若以B,O,C为顶点的三角形与△ABO全等,则点C的坐标不能为( )
A.(0,﹣4)B.(﹣2,0)C.(2,4)D.(﹣2,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下面的内容,再解决问题:
例题:若++-+=,求和的值.
解:++-+=
+++-+=
()+(-)=
-=
-,
问题:(1)若--=, 求的值;
(2)已知的三边长都是正整数,且满足--+│3-│=,请问是怎样形状的三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需
在商场购买6台. 从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场
运一台电脑到一中、二中的运费分别是40元和80元. 要求总运费不超过840元,问有几
种调运方案?指出运费最低的方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.
(1)求证:△BCE≌△DCF;
(2)求CF的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com