精英家教网 > 初中数学 > 题目详情

【题目】8分)如图,AC是O的直径,OB是O的半径,PA切O于点A,PB与AC的延长线交于点M,COB=APB.

(1)求证:PB是O的切线;

(2)当OB=3,PA=6时,求MB,MC的长.

【答案】(1)证明见试题解析;(2)MB=4,MC=2.

【解析】

试题(1)切线的性质,得到MAP=90°,直角三角形的性质,得到P+M=90°,余角的性质,得到M+MOB=90°,可得MOB=90°,根据切线的判定,可得答案;

(2)根据OBM∽△APM,可得,根据解方程组,可得答案.

试题解析:(1)PA切O于点A,∴∠MAP=90°,∴∠P+M=90°.∵∠COB=APB,∴∠M+MOB=90°,∴∠MOB=90°,即OBPB,PB经过直径的外端点,PB是O的切线;

(2)∵∠COB=APB,OBM=PAM,∴△OBM∽△APM, 解得MB=4,MC=2,当OB=3,PA=6时,MB=4,MC=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,ADCD于点D.EAB延长线上一点,CE交⊙O于点F连结OCAC.

(1)求证AC平分∠DAO

(2)若∠DAO=105°E=30°.①求∠OCE的度数.②若⊙O的半径为,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由大小相同的棱长为的小正方体搭成的几何体,

请分别画出它的从正面、左面、上面看到的形状图.

摆成如图的形状后,表面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴交于点A,与y轴交于点C.抛物线经过AC两点,且与x轴交于另一点BB在点A右侧

1求抛物线的解析式及点B坐标;

2若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

3试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,CAB延长线上一点,CD⊙O相切于点EAD⊥CD于点D

1)求证:AE平分∠DAC

2)若AB=4∠ABE=60°

AD的长;

求出图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACBC=4,面积是16AC的垂直平分线EF分别交ACAB边于点EF,若点DBC边上的中点,点M为线段EF一动点,则CDM周长的最小值为(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.

(1)求直线AB的解析式;

(2)根据图象写出当y1>y2时,x的取值范围;

(3)若点Py轴上,求PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°.点OAB的中点,边AC6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CDCE的长度之和为_____

查看答案和解析>>

同步练习册答案