精英家教网 > 初中数学 > 题目详情

【题目】已知直线y= x+b与双曲线y= 的一个交点为(2,5),直线与y轴交于点A.
(1)求m的值及点A的坐标;
(2)若点P在双曲线y= 的图象上,且SPOA=10,求点P的坐标.

【答案】
(1)解:把(2,5)代入y= 得m=10;

把(2,5)代入y= x+b得1+b=5,解得b=4,

则直线的解析式是y= x+4,

令x=0,解得y=4,

则A的坐标是(0,4);


(2)解:设P的横坐标是m,

×4|m|=10,

解得m=±5.

当x=m=5时,代入y= 得y=2,则P的坐标是(5,2),

当x=﹣5时,代入y= 得y=﹣2,则P的坐标是(﹣5,﹣2).

则P的坐标是(5,2)或(﹣5,﹣2).


【解析】(1)利用待定系数法即可求得反比例函数和一次函数的解析式,然后求得A的坐标;(2)设P的横坐标是m,根据三角形的面积公式求得P的横坐标,进而求得P的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,经过点A1(1,0)作x轴的垂线与直线l:y= x相交于点B1 , 以O为圆心,OB1为半径画弧与x轴相交于点A2;经过点A2作x轴的垂线与直线l相交于点B2 , 以O为圆心、OB2为半径画弧与x轴相交于点A3;…依此类推,点A5的坐标是( )

A.(8,0)
B.(12,0)
C.(16,0)
D.(32,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A、B分别在反比例函数y= (x>0),y=﹣ (x>0)的图象上,且OA⊥OB,则tanB为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连结PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,AC=BC,AB=2,现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC,直线BC相交于点E,F,我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α(0°<α<90°).

(1)如图2,在旋转过程中,当点E在线段AC上时,试判别△DEF的形状,并说明理由;

(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】七年级(1)班的宣传委员在办黑板报时,采用了下面的图案作为边框,其中每个黑色六边形与6个白色六边形相邻.若一段边框上有45个黑色六边形,则这段边框共有白色六边形(  )

A. 182 B. 180 C. 272 D. 270

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.
(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知y=﹣x+m(m>4)过动点A(m,0),并与反比例函数y= 的图象交于B、C两点(点B在点C的左边),以OA为直径作反比例函数y= 的图象相交的半圆,圆心为P,过点B作x轴的垂线,垂足为E,并于半圆P交于点D.
(1)当m=5时,求B、C两点的坐标.
(2)求证:无论m取何值,线段DE的长始终为定值.
(3)记点C关于直线DE的对称点为C′,当四边形CDC′E为菱形时,求m的值.

查看答案和解析>>

同步练习册答案