精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;

(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.

当t为何值时,四边形OMPQ为矩形;

②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

【答案】解:(1)根据题意,设抛物线的解析式为:

点A(1,0),B(0,3)在抛物线上,

,解得:

抛物线的解析式为:

(2)①∵四边形OMPQ为矩形,

OM=PQ,即,整理得:t2+5t﹣3=0,

解得<0,舍去)。

秒时,四边形OMPQ为矩形

RtAOB中,OA=1,OB=3,tanA=3

AON为等腰三角形,有三种情况:

(I)若ON=AN,如答图1所示

过点N作NDOA于点D,

则D为OA中点,OD=OA=

t=

(II)若ON=OA,如答图2所示

过点N作NDOA于点D,

设AD=x,则ND=ADtanA=3x,OD=OA﹣AD=1﹣x,

在RtNOD中,由勾股定理得:OD2+ND2=ON2

,解得x1=,x2=0(舍去)

x=,OD=1﹣x=

t=

(III)若OA=AN,如答图3所示

过点N作NDOA于点D,

设AD=x,则ND=ADtanA=3x,

在RtAND中,由勾股定理得:ND2+AD2=AN2

,解得x1=,x2=(舍去)

x=OD=1﹣x=1﹣

t=1﹣

综上所述,当t为秒、秒,1﹣秒时,AON为等腰三角形

解析(1)用待定系数法求出抛物线的顶点式解析式

(2)当四边形OMPQ为矩形时,满足条件OM=PQ,据此列一元二次方程求解

②△AON为等腰三角形时,可能存在三种情形,分类讨论,逐一计算

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EF为对角线BD上的两点,且∠DAE=∠BCF

求证:(1AECF

2)四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.

(1)求证:四边形ADEF是平行四边形;

(2)求证:DHF=DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点DOB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF.已知点EA点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.

(1)如图1,当t=3时,求DF的长.

(2)如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.

(3)连结AD,当ADDEF分成的两部分的面积之比为1:2时,求相应的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接与⊙OAB是直径,⊙O的切线PCBA的延长线于点POF∥BCACACE,交PC于点F,连接AF

1)判断AF⊙O的位置关系并说明理由;

2)若⊙O的半径为4AF=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列不等式组

1

2

32x1xx5

4

5

6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

1)求甲、乙两种型号的机器人每台的价格各是多少万元;

2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年,重庆被抖音抖成了网红城市,其中解放碑的游客数量明显高于去年同期,如图,小冉和小田决定用所学知识测量解放碑AB的高度,按照以下方式合作并记录所得数据:小冉从大厦DG的底端D点出发,沿直线步行10.2米到达E点,再沿坡度i=1:2.4的斜坡EF行走5.2米到达F点,最后沿直线步行30米到达解放碑底部B点,小田从大厦DG的底端乘直行电梯上行到离D51.5米的顶端G点,从G点观测到解放碑顶端A点的俯角为26°,若A,B,C,D,E,F,G在同一平面内,且B,FC,E,D分别在同一水平线上,则解放碑AB的高度约为(  )米.(精确到0.1米,参考数据:sin26°≈0.44,cos26°≈.90,tan26°≈0.49)

A. 29.0 B. 28.5 C. 27.5 D. 27.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点CAB的延长线上,AD平分∠CAE⊙O于点D,且AE⊥CD,垂足为点E

1)求证:直线CE⊙O的切线.

2)若BC=3CD=3,求弦AD的长.

查看答案和解析>>

同步练习册答案