【题目】已知二次函数
求出抛物线的对称轴和顶点坐标;
在直角坐标系中,直接画出抛物线(注意:关键点要准确,不必写出画图象的过程);
根据图象回答:
①取什么值时,抛物线在轴的上方?
②取什么值时,的值随的值的增大而减小?
根据图象直接写出不等式的解集.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.
(1)求证:△ADF≌△DCE;
(2)求GH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少销售10个。为了赚得8000元的利润,售价应定为多少?这时应进货多少个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,是角平分线,.
(1)如图1,是高,,,则 (直接写出结论,不需写解题过程);
(2)如图2,点在上,于,试探究与、之间的数量关系,写出你的探究结论并证明;
(3)如图3,点在的延长线上,于,则与、之间的数量关系是 (直接写出结论,不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.
(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.
(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.
(3)求机场大巴与货车相遇地到机场C的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与直线交于点,.
求抛物线的解析式.
点是抛物线上、之间的一个动点,过点分别作轴、轴的平行线与直线交于点、,以、为边构造矩形,设点的坐标为,求,之间的关系式.
将射线绕原点逆时针旋转后与抛物线交于点,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC=15cm,BC=12cm,点D是线段AC的中点,动点P从A﹣D﹣B﹣C向终点C出发,速度为5cm/s,当点P不与点A、B重合时,作PE⊥AB交线段AB于点E,设点P的运动时间为t(s),△APE的面积为S(cm2).
(1)写出线段AB的长;
(2)当点P在线段BD上时,求PE的长(用含t的式子表示);
(3)当点P沿A﹣D﹣B运动时,用含t的代数式表示S;
(4)点E关于直线AP的对称点为E′,当点E′落在△ABC的内部时,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°.再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF.已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).
(1)用含t的代数式表示出NC与NF;
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com