精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图象如图所示,则下列说法①;②;③当时,;④当时,;⑤关于的一元二次方程有两个不相等的实数根.你认为其中正确的有( )

A. B. C. D.

【答案】B

【解析】

由抛物线开口方向得到a>0,由抛物线与y轴的交点在x轴上方得到c>0,则可对①进行判断;利用抛物线的对称轴方程可得到b=-2a,则可对②进行判断;利用x=1时,y<0可对③进行判断;利用x=-1时,y>0,可对④进行判断;根据抛物线与x轴有2个交点可对⑤进行判断.

抛物线开口向上,

a>0,

抛物线与y轴的交点在x轴上方,

c>0,

ac>0,所以错误;

抛物线的对称轴为直线x=b2a=1,

b=2a,即2a+b=0,所以错误;

x=1时,y<0,

a+b+c<0,所以错误;

x=1时,y>0,

ab+c>0,所以正确;

抛物线与x轴有2个交点,

关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以正确.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦ABOC,劣弧AB的度数为120°,连接PB.

(1)求BC的长;

(2)求证:PB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,小聪同学利用直尺和圆规完成了如下操作:

①作的平分线于点

②作边的垂直平分线相交于点

③连接.

请你观察图形解答下列问题:

(1)线段之间的数量关系是________;

(2)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,交轴于点,顶点为,其对称轴交轴于点.直线经过两点,交抛物线的对称轴于点,其中点的横坐标为

(1)求抛物线的表达式;

(2)连接,求的周长;

(3)是抛物线位于直线的下方且在其对称轴左侧上的一点,当四边形的面积最大时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出命题:“等腰三角形两腰上的高相等”的逆命题,并证明其逆命题是真命题.(要求写出已知、求证和证明过程)

.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴、轴分别交于点,点轴负半轴上一点,于点轴于点,满足.已知抛物线经过点

求抛物线的函数关系式;

连接,点在线段上方的抛物线上,连接,若面积满足,求点的坐标;

如图中点,设为线段上一点(不含端点),连接.一动点出发,沿线段以每秒个单位的速度运动到,再沿着线段以每秒个单位的速度运动到后停止.若点在整个运动过程中用时最少,请直接写出最少时间和此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为  ▲  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+c(a0)图象如图所示,下列结论:①abc0②2ab0③b2(a+c)2(3y1)(1y2)都在抛物线上,则有y1y2.其中正确的结论有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球

(1)请画树状图,列举所有可能出现的结果

(2)请直接写出事件取出至少一个红球的概率.

查看答案和解析>>

同步练习册答案