精英家教网 > 初中数学 > 题目详情

【题目】如图,AB的直径,点CD上,且AD平分,过点DAC的垂线,与AC的延长线相交于E,与AB的延长线相交于点FGAB的下半圆弧的中点,DGABH,连接DBGB

证明EF的切线;

求证:

已知圆的半径,求GH的长.

【答案】(1)详见解析;(2)详见解析;(3).

【解析】

1)由题意可证ODAE,且EFAE,可得EFOD,即EFO的切线;(2)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG90°,根据勾股定理可求GH的长.

解:(1)证明:连接OD

OAOD

∴∠OAD=∠ODA

又∵AD平分∠BAC

∴∠OAD=∠CAD

∴∠ODA=∠CAD

ODAE

又∵EFAE

ODEF

EFO的切线

2)∵ABO的直径,

∴∠ADB90°

∴∠DAB+OBD90°

由(1)得,EFO的切线,

∴∠ODF90°

∴∠BDF+ODB90°

ODOB

∴∠ODB=∠OBD

∴∠DAB=∠BDF

又∠DAB=∠DGB

∴∠DGB=∠BDF

3)连接OG

G是半圆弧中点,

∴∠BOG90°

RtOGH中,OG5OHOBBH532

GH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从A,B两地同时相向匀速行驶.当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达A地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则B,C两地相距 千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BEO的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.

(1)若∠ADE=25°,求∠C的度数;

(2)若AB=AC,CE=2,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数的图象交于点A13),B31)两点,当一次函数大于反比例函数的值时,x的取值范围是(  )

A. x1 B. 1x3 C. x3 D. x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于AB两点,与y轴交于C03),A点在原点的左侧,B点的坐标为(30).点P是抛物线上一个动点,且在直线BC的上方.

1)求这个二次函数的表达式.

2)连接POPC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时点P的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60°30°,则该电线杆PQ的高度(  )

A. 6+2 B. 6+ C. 10 D. 8+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)如图,热气球的探测器显示,从热气球A处看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为65°,热气球与高楼的水平距离AD120m.求这栋高楼的高度.(结果用含非特殊角的三角函数及根式表示即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).

(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF

(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(xy)为△ABC中的任意一点,这次变换后的对应点P1的坐标为 .

查看答案和解析>>

同步练习册答案