精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,C是⊙O上一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且AC平分∠BAD.

(1)求证:直线MN是⊙O的切线;
(2)若CD=4,AC=5,求⊙O的直径.

【答案】
(1)证明:连接OC,

∵OA=OC,∴∠OAC=∠OCA,

∵AC平分∠BAD,∴∠CAB=∠DAC,

∴∠OCA=∠DAC,

∴OC∥AD.

∵AD⊥MN,∴OC⊥MN.

∵OC为半径,∴MN是⊙O切线.


(2)解:∵∠ADC=90°,AC=5,DC=4,

∴AD=3,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠ADC=∠ACB,

又∵∠CAB=∠DAC,

∴△ADC∽△ACB,

=

=

解得:AB=

即⊙O的直径长为


【解析】(1)直接利用角平分线的性质结合等腰三角形的性质得出OC⊥MN,进而得出答案;(2)利用相似三角形的判定与性质得出AB的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直径为AB的⊙O交Rt△BCD的两条直角边BC、CD于点E、F,且 ,连接BF.

(1)求证:CD为⊙O的切线;
(2)当CF=1且∠D=30°时,求AD长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.
(1)求证:PB是⊙O的切线.
(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43°,1s后,火箭到达B点,此时测得仰角为45.5°,这枚火箭从点A到点B的平均速度是多少?(结果精确到0.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在ABCD中,点E、F分别在AB、CD上,且AE=CF.

(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线y=x+1与y轴相交于点A1 , 以OA1为边作正方形OA1B1C1 , 记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2 , 再以C1A2为边作正方形C1A2B2C2 , 记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3 , 再以C2A3为边作正方形C2A3B3C3 , 记作第三个正方形;…,依此类推,则第n个正方形的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).
(1)求所获销售利润y(元)与x(箱)之间的函数关系式;
(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(2,0)和B(t,0)(t≥2),与y轴交于点C,直线l:y=x+2t经过点C,交x轴于点D,直线AE交抛物线于点E,且有∠CAE=∠CDO,作CF⊥AE于点F.

(1)求∠CDO的度数;
(2)求出点F坐标的表达式(用含t的代数式表示);
(3)当SCOD﹣S四边形COAF=7时,求抛物线解析式;
(4)当以B,C,O三点为顶点的三角形与△CEF相似时,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为(  )
A.(2,3)
B.(3,1)
C.(2,1)
D.(3,3)

查看答案和解析>>

同步练习册答案