精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠A=60°,CD、CE是∠ACB的三等分线,BD、BE是∠ABC的三等分线,则图中∠BDC的度数为


  1. A.
    90°
  2. B.
    100°
  3. C.
    120°
  4. D.
    135°
B
分析:根据三角形的内角和定理求出∠ABC+∠ACB的度数是120°,再根据CD、CE是∠ACB的三等分线,BD、BE是∠ABC的三等分线即可求出∠DBC+∠DCB的度数是80°,然后根据三角形的内角和定理即可求出∠D的度数.
解答:∵∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵CD、CE是∠ACB的三等分线,BD、BE是∠ABC的三等分线,
∴∠DBC+∠DCB=(∠ABC+∠ACB)=×120°=80°,
∴∠BDC=180°-(∠DBC+∠DCB)=180°-80°=100°.
故选B.
点评:本题主要考查三角形的内角和定理和的三等分线定义,熟练掌握定理和概念是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案