精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:
①abc>0;②x=1时,函数最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正确的结论有( )

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:∵抛物线开口向下,
∴a<0,
∵对称轴为直线x=﹣ =1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在正半轴,
∴c>0,
∴abc<0,故①错误;
∵顶点坐标为(1,2),
∴x=1时,函数最大值是2,故②正确;
根据对称性,抛物线与x轴的另一交点为(0,3),
∴x=2时,y>0,
∴4a+2b+c>0,故③正确;
∵b=﹣2a,
∴2a+b=0,故④正确;
当x=﹣1时,y=a﹣b+c=0,
∴﹣ ﹣b+c=0,
∴2c=3b,故⑤错误;
综上所述,正确的结论有②③④共3个.
故选C.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,2)是反比例函数y= 图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两人分别从A(1, ),B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.

(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA;
(3)甲、乙两人之间的距离为MN的长,设s=MN2 , 直接写出s与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y= (x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).则点F的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.

(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为
(2)求点M(3,0)到直线y=2x+1的距离;
(3)如果点N(0,a)到直线y=2x+1的距离为3,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.
(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;
(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD的对角线AC是黄金线(要求:保留作图痕迹);
(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=2x+a与y= (a≠0)的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式
(1)2cos45°+sin30°cos60°+cos30°
(2)| ﹣5|+2cos30°+( 1+(9﹣ 0+

查看答案和解析>>

同步练习册答案