精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

【答案】B
【解析】解:∵四边形ABCD为平行四边形, ∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴DBCE为矩形,故本选项错误;
B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
C、∵∠ADB=90°,∴∠EDB=90°,∴DBCE为矩形,故本选项错误;
D、∵CE⊥DE,∴∠CED=90°,∴DBCE为矩形,故本选项错误.
故选B.
先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCD中CD边上一点,以点A为中心把△ADE顺时针旋转90°.
(1)在图中画出旋转后的图形;
(2)若旋转后E点的对应点记为M,点F在BC上,且∠EAF=45°,连接EF. ①求证:△AMF≌△AEF;
②若正方形的边长为6,AE=3 ,求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:
①abc>0;②x=1时,函数最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正确的结论有( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.

(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,点B所经过的路径的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水龙头关闭不严会造成滴水,容器内盛水量w(L)与滴水时间t(h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.

(1)容器内原有水多少升?
(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣ 2﹣(π﹣ 0﹣| ﹣2|+2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.

组别

分组

频数

频率

1

50≤x<60

9

0.18

2

60≤x<70

a

3

70≤x<80

20

0.40

4

80≤x<90

0.08

5

90≤x≤100

2

b

合计


请根据以上频率分布表和频率分布直方图,回答下列问题:
(1)求出a、b、x、y的值;
(2)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1为平地上一幢建筑物与铁塔图,图2为其示意图.建筑物AB与铁塔CD都垂直于地面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD的高度.

查看答案和解析>>

同步练习册答案