精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是矩形,点EAD边上,点FAD的延长线上,且BE=CF.

(1)求证:四边形EBCF是平行四边形.

(2)若BEC=90°,ABE=30°,AB=,求ED的长.

【答案】(1)证明见解析(2)3

【解析】试题分析

(1)AB=CD,BE=CF,可证Rt△BAE≌Rt△CDF,从而证得BE∥CF,即可得证;

(2)由题意可知∠2=30°,∠1=∠3=60°,在直角△ABE中求出AE,BE,在直角△BEC中求出BC的长,即可求出ED的长.

试题解析

(1)证明:

四边形ABCD是矩形,∴∠A=∠CDF=∠ABC=90°,AB=DC,AD=BC,

Rt△BAERt△CDF中,

∴Rt△BAE≌Rt△CDF,∴∠1=∠F,∴BE∥CF,

∵BE=CF,∴四边形EBCF是平行四边形.

(2)解:∵Rt△BAE中,∠2=30°,AB=

∴AE=ABtan∠2=1,,∠3=60°,

Rt△BEC中,

∴AD=BC=4,

∴ED=AD﹣AE=4﹣1=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.

(1)求证:DEF是等腰三角形;

(2)当∠A=40°时,求∠DEF的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上任一点,射线OD和射线OE分别平分AOCBOC

(1)填空:与AOE互补的角是

(2)若AOD=36°,求DOE的度数;

(3)当AOD=x°时,请直接写出DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、20、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张。(转盘等分成20)

(1)小华购物450,他获得购物券的概率是多少?

(2)小丽购物600,那么她获得100元以上(包括100)券的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题.

程大位明代商人珠算发明家被称为珠算之父、卷尺之父.少年时读书极为广博对数学颇感兴趣60岁时完成其杰作《直指算法统宗》简称《算法统宗》).

在《算法统宗》里记载了一道趣题一百馒头一百僧大僧三个更无争小僧三人分一个大小和尚各几丁意思是100个和尚分100个馒头如果大和尚1人分3小和尚3人分1正好分完.试问大、小和尚各多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PGDCH,折痕为EF,连接BPBH

1)求证:∠APB=∠BPH

2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知D△ABC的边AB上一点,CE∥ABDEAC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米。

1)这个梯子的顶端离地面有多高?

2如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产,若购买3盒豆腐乳和2盒猕猴桃果汁共需60元;购买1盒豆腐乳和3盒猕猴桃果汁共需55元.

(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;

(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?

查看答案和解析>>

同步练习册答案