分析 (1)根据题意证明A+B=0即可;
(2)先根据分式混合运算的法则求出A-B的式子,再根据求出不等式3(x-3)<6-2x的解集,根据x是满足不等式3(x-3)<6-2x的正整数解求出x的值,代入原式进行计算即可.
解答 (1)证明:∵A=$\frac{3}{x+2}$,B=$\frac{x-2}{x+3}$÷$\frac{{x}^{2}-4}{2x+6}$-$\frac{5}{x+2}$,
∴A+B=$\frac{3}{x+2}$+$\frac{x-2}{x+3}$÷$\frac{{x}^{2}-4}{2x+6}$-$\frac{5}{x+2}$
=$\frac{3}{x+2}$+$\frac{x-2}{x+3}$•$\frac{2(x+3)}{(x+2)(x-2)}$-$\frac{5}{x+2}$
=$\frac{3}{x+2}$+$\frac{2}{x+2}$-$\frac{5}{x+2}$
=$\frac{3+2-5}{x+2}$
=0;
(2)解:∵A=$\frac{3}{x+2}$,B=$\frac{x-2}{x+3}$÷$\frac{{x}^{2}-4}{2x+6}$-$\frac{5}{x+2}$,
∴A-B=$\frac{3}{x+2}$-$\frac{x-2}{x+3}$÷$\frac{{x}^{2}-4}{2x+6}$+$\frac{5}{x+2}$
=$\frac{3}{x+2}$-$\frac{2}{x+2}$+$\frac{5}{x+2}$
=$\frac{6}{x+2}$,
解不等式3(x-3)<6-2x得,x<3.
∵x是满足不等式3(x-3)<6-2x的正整数解,
∴x1=1,x2=2(舍去)
∴当x=1时,原式=$\frac{6}{1+2}$=2.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com