【题目】如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是 .
【答案】
【解析】
试题分析:根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】自北京成功举办2008年夏季奥运会,去年又成功获得2022年冬季奥运会举办权以来,奥运知识在我国不断传播.小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图25-1和图25-2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)该班共有 名学生;
(2)在条形图中,将表示“一般了解”的部分补充完整.
(3)在扇形统计图中,“了解较多”部分所对应的圆心角的度数为 ;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识 “了解较多”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的条件是( )
A. 3:4:3:4B. 3:3:4:4C. 2:3:4:5D. 3:4:4:3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20 m3,每立方米收费2元;若用水量超过20 m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于 .(只需写出一个符合要求的数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com