精英家教网 > 初中数学 > 题目详情
9.如图,在四边形ABCD中,∠C=∠D=90°,E是CD中点,F是BC上一点,且AE平分∠DAF,求证:AF=AD+CF.

分析 作EM⊥AF于M,连接EF,证明Rt△ADE≌Rt△AME,Rt△EMF≌Rt△ECF,得出AD=AM,FM=FC,从而得出结论.

解答 解:如图,作EM⊥AF于M,连接EF,

∵∠D=90°,
∴∠D=∠AME=90°,
∵AE平分∠DAF,
∴∠1=∠2,
∴DE=ME,
在Rt△ADE与Rt△AME中,
$\left\{\begin{array}{l}{DE=ME}\\{AE=AE}\end{array}\right.$,
∴Rt△ADE≌Rt△AME,
∴AM=AD,
∵E是DC中点,
∴EC=DE=EM,
在Rt△EMF与Rt△ECF中,
$\left\{\begin{array}{l}{EM=EC}\\{EF=EF}\end{array}\right.$,
∴Rt△EMF≌Rt△ECF,
∴FM=FC,
∵AF=AM+MF,
∴AF=AD+CF.

点评 本题考查了全等三角形的判定和性质,正确的作出辅助线,构建全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.某商品进价40元,售价若定为每件50元,每月可卖出300件,市场调查反映:如调整价格,每涨价1元,每月少卖出10件;若每降价1元,每月多卖出20件,物价部门规定:该商品利润率不得高于40%,同时商家要求不亏本.设商品调价后的售价为x元(x为正整数),每月销量为y件.
(1)写出y与x间的函数关系式并写出自变量的取值范围;
(2)写出每月利润W与售价x的函数关系式;
(3)如何定价才能获得最大利润?最大利润是多少?并直接写出W随x增大而增大的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.若a,b为有理数,且$\sqrt{18}$+$\sqrt{9}$$+\sqrt{\frac{1}{8}}$=a+b$\sqrt{2}$,求5a-4b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知x=7+4$\sqrt{3}$,y=7-4$\sqrt{3}$,求5x2-16xy+5y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(-4,0),抛物线y=ax2-2x经过点A.动点P从O点出发,沿y轴的负半轴运动,速度为1个单位/秒,过点P做y轴的垂线,交抛物线于点B、C,点B在左侧,设运动时间为t秒.
(1)求抛物线的解析式;
(2)设线段BC的长为m,求m与t之间的函数关系式,直接写出自变量t的取值范围;
(3)在(2)的条件下,连接OB、OC,点D为OP上一点,tan∠BOC=$\frac{BC}{OD}$,当t为何值时,PD=PC?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,DE=BD,EF∥DG∥BC,EG的延长线交BC的延长线于H,则EF与CH的大小关系如何?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC中,∠BAC=90°,AB=AC,AN是过A的一条直线,且BM⊥AN于M,CN⊥AN于N.
(1)求证:AM=CN;
(2)求证:MN=BM-CN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)解下列方程:(x+1)2=4x
(2)化简:2-1+|-$\frac{1}{2}$|+$\root{3}{-8}$+($\frac{π}{3}$)0-$\frac{2}{\sqrt{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.观察下面的变形规律:$\frac{1}{1×2}$=1-$\frac{1}{2}$;$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…
解答下面的问题:
(1)若n为正整数,请你猜想:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)求和:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2010×2011}$=$\frac{2010}{2011}$.

查看答案和解析>>

同步练习册答案