精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=BC,以AB为直径作⊙O,点D是AC的中点,过点D作DE⊥BC,垂足为E.
(1)确定点D与⊙O的位置关系,并说明理由.
(2)确定直线DE与⊙O的位置关系,并说明理由.
(3)过点D作DG⊥AB交⊙O于G,垂足为F,若DG=10,FB=2,求直径AB的长.

证明:(1)连接BD,
∵AB=BC,以AB为直径作⊙O,点D是AC的中点,
∴BD⊥AC,
∵AB是直径,∠ADB=90°,
∴点D,在⊙O上;

(2)连接OD,
∵OA=OD,
∴∠A=∠ADO.
∵BA=BC,
∴∠A=∠C,
∴∠ADO=∠C,
∴DO∥BC.
∵DE⊥BC,
∴DO⊥DE.
∵点D在⊙O上,
∴DE是⊙O的切线.
(3)∵过点D作DG⊥AB交⊙O于G,垂足为F,
DG=10,FB=2,
∴DF=FG=5,
∴DF2=BF×AF=25,
∴AF=
∴AB=
分析:(1)利用等腰三角形的性质以及圆周角定理求出即可;
(2)连接OD,只要证明OD⊥DE即可.本题可根据等腰三角形中两底角相等,将相等的角进行适当的转换,即可证得OD⊥DE;
(3)利用垂径定理以及相交线定理求出即可.
点评:此题考查了切线的判定、垂径定理、相交弦定理等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案