精英家教网 > 初中数学 > 题目详情

【题目】如图,过点轴的垂线,交直线于点;点与点关于直线对称;过点轴的垂线,交直线于点;点与点关于直线对称;过点轴的垂线,交直线于点,按此规律作下去,则点的坐标为________

【答案】

【解析】

先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点Bn的坐标,从而可得的坐标.

解:∵点A1坐标为(10),
OA1=1
∵过点A1x轴的垂线交直线于点B1,可知B1点的坐标为(12),
∵点A2与点O关于直线A1B1对称,
OA1=A1A2=1
OA2=1+1=2
∴点A2的坐标为(20),B2的坐标为(24),
∵点A3与点O关于直线A2B2对称,故点A3的坐标为(40),B3的坐标为(48),
依此类推便可求出点An的坐标为(2n-10),点Bn的坐标为(2n-12n),

A10的坐标为.
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“普洱茶”是云南有名的特产,某网店专门销售某种品牌的普洱茶,成本为30/盒,每天销售()与销售单价()之间存在一次函数关系,如图所示.

(1)之间的函数关系式;

(2)如果规定每天该种普洱茶的销售量不低于240盒,该网店店主热心公益事业,决定从每天的销售利润中捐出500元给扶贫基金会,当销售单价为多少元时,每天获取的净利润最大,最大净利润是多少?(:净利润=总利润-捐款)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点AB.抛物线过AB两点,点P是线段AB上一动点,过点PPCx轴于点C,交抛物线于点D

1)如图1,设抛物线顶点为M,且M的坐标是(),对称轴交AB于点N

求抛物线的解析式;

是否存在点P,使四边形MNPD为菱形?并说明理由;

2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣xx轴于点A,点B6n)为抛物线上一点.

1)求mn之间的函数关系;

2)如图,点C(﹣n0)在x轴上,且∠BAC2ACB,求m的值;

3)在(2)的条件下,P为直线BC上方抛物线上一点,过点PPDABx轴于点DDEBCOP于点E,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点轴交于点,抛物线经过两点,与轴的另一交点为

1)求抛物线的解析式;

2为抛物线上一点,直线轴交于点,当时,求点的坐标;

3)在直线下方的抛物线上是否存在点,使得,如果存在这样的点,请求出点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形的对角线相交于点,且

1)求证:四边形是菱形;

2)求经过点的双曲线对应的函数解析式;

3)设经过点的双曲线与直线的另一交点为,过点轴的平行线,交经过点的双曲线于点,交轴于点,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在兰州市开展的体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒

乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:

1)样本中喜欢B项目的人数百分比是    ,其所在扇形统计图中的圆心角的度数是    

2)把条形统计图补充完整;

3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的点AC在⊙O上,⊙OAB相交于点D,连接CD,∠A30°DC

1)求圆心O到弦DC的距离;

2)若∠ACB+ADC180°,求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两建筑物的水平距离,点测得点的俯角,测得点的俯角,求这两个建筑物的高度.(结果保留整数)

查看答案和解析>>

同步练习册答案