精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形的对角线相交于点,且

1)求证:四边形是菱形;

2)求经过点的双曲线对应的函数解析式;

3)设经过点的双曲线与直线的另一交点为,过点轴的平行线,交经过点的双曲线于点,交轴于点,求的面积.

【答案】1)见解析;(2;(3

【解析】

1)先证明四边形AEBD是平行四边形,再由矩形的性质得出DA=DB,即可证出四边形AEBD是菱形;
2)连接DE,交ABM,由菱形的性质得出ABDE互相垂直平分,求出EMAM,得出点E的坐标;设经过点E的反比例函数解析式为:,把点E坐标代入求出k的值即可;

3)设经过点的反比例函数解析式为,结合点B坐标求出表达式,利用求出结果.

解:(1)证明:

四边形是平行四边形,

四边形是矩形,

平行四边形是菱形;

2)解:如图1,连接,交于点

四边形是菱形,

互相垂直且平分,

,

的坐标为,

设经过点的反比例函数解析式为

把点代得

双曲线的函数解析式为

3)解:如图2,设经过点的反比例函数解析式为

把点代入得

经过点的反比例函数解析式为

直线轴,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①ABBC,②∠ABC90°,③ACBD,④ACBD中任选两个作为补充条件,使ABCD为正方形.现有下列四种选法,你认为其中错误的是(  )

A.②③B.①③C.①②D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以BC为底边的等腰△ABC,点DEG分别在BCABAC上,且EGBCDEAC,延长GE至点F,使得BE=BF

1)求证:四边形BDEF为平行四边形;

2)当∠C=30°,时,求DF两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB90°,BC2,∠A30°,点EF分别是线段BCAC的中点,连结EF

1)线段BEAF的位置关系是      

2)如图2,当△CEF绕点C顺时针旋转a时(0°<a180°),连结AFBE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.

3)如图3,当△CEF绕点C顺时针旋转a时(0°<a180°),延长FCAB于点D,如果AD62,求旋转角a的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点轴的垂线,交直线于点;点与点关于直线对称;过点轴的垂线,交直线于点;点与点关于直线对称;过点轴的垂线,交直线于点,按此规律作下去,则点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别过反比例函数图象上的点, ...···作轴的垂线,垂足分别为······,连接···再以为一组邻边画一个平行四边形,以为一组邻边画一个平行四边形,依此类推,则点的纵坐标是_____.(结果用含代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.

(1)求A,B两种型号的机器人每小时分别搬运多少材料;

(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解中学生规范书写汉字情况,某市语言文字工作委员会从市区初中在校生中抽取了部分学生进行了调查,把调查的结果分为四个等级:级:优秀;级:良好;级:合格;级:不合格,并绘制了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:

1)求本次抽样调查的学生人数;

2)求图的度数,并把图补充完整;

3)调查人员想从位同学(分别记为,其中为小明)中随机选择两位同学,参加中学生提高书写汉字水平的座谈会,请用列表或画树状图的方法求出选中小明的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAB中点,以BE为边作正方形BEFG,边EFCD于点H,在边BE上取点M使BMBC,作MNBGCD于点L,交FG于点N.欧儿里得在《几何原本》中利用该图解释了.现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点ALG在同一直线上,则的值为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案