【题目】如图,小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中任选两个作为补充条件,使ABCD为正方形.现有下列四种选法,你认为其中错误的是( )
A.②③B.①③C.①②D.③④
【答案】A
【解析】
根据正方形的性质以及判定定理对各项进行判断即可.
解:A、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
B、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
C、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,
∴当③AC=BD时,平行四边形ABCD是矩形,
当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)画出△ABC关于原点O成中心对称的△A′B′C′,点A′,B′,C′分别是点A,B,C的对应点.
(2)求过点B′的反比例函数解析式.
(3)判断A′B′的中点P是否在(2)的函数图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在圆O上,BE⊥CD垂足为E,CB平分∠ABE,连接BC
(1)求证:CD为⊙O的切线;
(2)若cos∠CAB=,CE=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠B的平分线交AC于E,DE⊥BE.
(1)试说明AC是△BED外接圆的切线;
(2)若CE=1,BC=2,求△ABC内切圆的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“普洱茶”是云南有名的特产,某网店专门销售某种品牌的普洱茶,成本为30元/盒,每天销售(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天该种普洱茶的销售量不低于240盒,该网店店主热心公益事业,决定从每天的销售利润中捐出500元给扶贫基金会,当销售单价为多少元时,每天获取的净利润最大,最大净利润是多少?(注:净利润=总利润-捐款)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数与二次函数的图象的一个交点坐标为,另一个交点在轴上,点为轴右侧抛物线上的一动点.
(1)求此二次函数的解析式;
(2)当点位于直线上方的抛物线上时,求面积的最大值;
(3)当此抛物线在点与点之间的部分(含点和点)的最高点与最低点的纵坐标之差为9时,请直接写出点的坐标和的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的方程C1:(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的对角线,相交于点,,,且,.
(1)求证:四边形是菱形;
(2)求经过点的双曲线对应的函数解析式;
(3)设经过点的双曲线与直线的另一交点为,过点作轴的平行线,交经过点的双曲线于点,交轴于点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com