精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣41),B(﹣23),C(﹣12).

1)画出ABC关于原点O成中心对称的ABC,点ABC分别是点ABC的对应点.

2)求过点B的反比例函数解析式.

3)判断AB的中点P是否在(2)的函数图象上.

【答案】1)如图,见解析;(2y=﹣;(3)点P在(2)的函数图象上.

【解析】

1)根据关于原点成中心对称的点的坐标特征,即横纵坐标均为相反数,找到对应点,然后依次连线即可.

2)根据待定系数法,设出反比例函数解析式,然后将B的坐标代入计算即可.

3)确定AB的中点P的坐标,然后将P点的坐标代入函数解析式,即可解决问题.

1)∵A(﹣41),B(﹣23),C(﹣12).

关于原点对称的点的坐标横纵坐标均为相反数

A4-1),B2-3),C1-2

在坐标系中找到ABC,依次连线即可.

如图:

2)设过点B′的反比例函数解析式为y

B′(2,﹣3),

∴﹣3

k=﹣6

∴反比例函数解析式为y=﹣

3)∵A′(4,﹣1),B′(2,﹣3

AB′的中点P坐标为(3,﹣2),

3×(﹣2)=﹣6

∴点P在(2)的函数图象上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在全国初中数学联赛中,将参赛两个班学生的成绩(得分均为整数)进行整理后分成五组,绘制出如下的频率分布直方图(如图所示),已知图中从左到右的第一、第三、第四、第五小组的频率分别是025015010010,第二组的频数是40

1)第二小组的频率是_____,并补全这个频率分布直方图;

2)这两个班参赛的学生人数是_________

3)这两个班参赛学生的成绩的中位数落在第______组内.(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扬州某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,若乙团队人数不超过40人,甲团队人数不超过80人,设甲团队人数为人,如果甲、乙两团队分别购买门票,两团队门票款之和为元.

1)直接写出关于的函数关系式,并写出自变量的取值范围;

2)计算甲、乙两团队联合购票比分别购票最多可节约多少钱?

3)该景区每年11月、12月为淡季,景区决定在这两个月实行门票打五折的优惠(打折期间不售团体票),以吸引大量游客,提高景区收入;景区经过调研发现,随着接待游客数的增加,景区的运营成本也随之增加,景区运营成本(万元)与两个月游客总人数(万人)之间满足函数关系式:;两个月游客总人数(万人)满足:,且淡季每天游客数基本相同;为了获得最大利润,景区决定通过网络预约购票的方式控制淡季每天游客数,请问景区的决定是否正确?并说明理由.(利润门票收入景区运营成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明遇到这样一个问题:

如图1,ABC中,∠ACB=90°,点DAB上,且∠BAC=2DCB,求证:AC=AD.

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作AE平分∠CAB,与CD相交于点E.

方法2:如图3,作∠DCF=DCB,与AB相交于点F.

(1)根据阅读材料,任选一种方法,证明AC=AD.

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4,ABC中,点DAB上,点EBC上,且∠BDE=2ABC,点FBD上,且∠AFE=BAC,延长DC、FE,相交于点G,且∠DGF=BDE.

①在图中找出与∠DEF相等的角,并加以证明;

②若AB=kDF,猜想线段DEDB的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】唐山世园会期间,游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收31万元.而该游乐场开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且yax2bx.若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元)g也是关于x的二次函数.

(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;

(2)求纯收益g关于x的解析式;

(3)问设施开放几个月后,游乐场的纯收益达到最大?并求出最大收益.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加学校组织的智力竞答活动,竞赛中有两道单选题完全不会.这两道单选题各有ABC三个选项,第一道单选答案是B.第二道单选答案是C.最终两道题小明随机各写了一个答案

1)小明答对第一道题的概率是   

2)请用树状图或者列表求出小明两道题都答对的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知反比例函数y的图象经过点A(1)

(1)试确定此反比例函数的解析式;

(2)O是坐标原点,将线OAO点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点.

1)求抛物线的解析式;

2)将抛物线向下平移个单位,使平移后得到的抛物线顶点落在的内部(不包括的边界),求的取值范围.

3)若是抛物线上一动点,是否存在点,使的面积是?若存在,直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①ABBC,②∠ABC90°,③ACBD,④ACBD中任选两个作为补充条件,使ABCD为正方形.现有下列四种选法,你认为其中错误的是(  )

A.②③B.①③C.①②D.③④

查看答案和解析>>

同步练习册答案