【题目】在全国初中数学联赛中,将参赛两个班学生的成绩(得分均为整数)进行整理后分成五组,绘制出如下的频率分布直方图(如图所示),已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.25、0.15、0.10、0.10,第二组的频数是40.
(1)第二小组的频率是_____,并补全这个频率分布直方图;
(2)这两个班参赛的学生人数是_________;
(3)这两个班参赛学生的成绩的中位数落在第______组内.(不必说明理由)
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,其中,,与轴交于点,抛物线的对称轴交轴于点,直线经过点,,连接.
(1)求抛物线和直线的解析式:
(2)若抛物线上存在一点,使的面积是面积的2倍,求点的坐标;
(3)在抛物线的对称轴上是否存在一点,使线段绕点顺时针旋转得到线段,且恰好落在抛物线上?若存在,求出点的坐标;若不存在,请说叫理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图所示,点为矩形边的中点,在矩形的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员从点出发,沿着的路线匀速行进,到达点.设运动员的运动时间为,到监测点的距离为.现有与的函数关系的图象大致如图所示,则这一信息的来源是( ).
A. 监测点 B. 监测点 C. 监测点 D. 监测点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
数学活动课上,老师让同学们根据如下问题情境,发现并提出问题.
如图1,△ABC与△EDC都是等腰直角三角形,点E,D分别在AC和BC上,连接EB.将线段EB绕点B顺时针旋转90°,得到的对应线段为BF.连接DF.“兴趣小组”提出了如下两个问题:①AE=BD,AE⊥BD;②DF=AB,DF⊥AB.
解决问题:
(1)请你证明“兴趣小组”提出的第②个问题.
探索发现:
(2)“实践小组”在图1的基础上,将△EDC绕点C顺时针旋转角度(0°<<90°),其它条件保持不变,得到图2.
①请你帮助“实践小组”探索:“兴趣小组”提出的两个问题是否还成立?如果成立,请给出证明;若不成立,请说明理由.
②如图3,当AD=AF时,请求出此时旋转角α的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.
(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每个正方形四条边上的整点的个数.按此规律推算出正方形A10B10C10D10四条边上的整点共有______个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E=,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形边长为2,、分别是、上两动点,且满足,交于点.
(1)如图1,判断线段、的位置关系,并说明理由;
(2)在(1)的条件下,连接,直接写出的最小值为 ;
(3)如图2,点为的中点,连接.
①求证:平分;
②求线段的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)画出△ABC关于原点O成中心对称的△A′B′C′,点A′,B′,C′分别是点A,B,C的对应点.
(2)求过点B′的反比例函数解析式.
(3)判断A′B′的中点P是否在(2)的函数图象上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com