精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知反比例函数y的图象经过点A(1)

(1)试确定此反比例函数的解析式;

(2)O是坐标原点,将线OAO点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.

【答案】(1)y;(2)在,理由见解析

【解析】

1)把点A坐标代入反比例函数解析式,求出k值即可;(2)过点Ax轴的垂线交x轴于点C.过点Bx轴的垂线交x轴于点D.利用勾股定理可求出OA的长,进而可得∠OAC=30°∠AOC60°,由旋转的性质可得∠AOB=30°,即可求出∠BOD的度数,进而可得BDOD的长,即可得B点坐标,把B点横坐标代入解析式即可得答案.

(1)A(1)代入y,得k

反比例函数的解析式为y.

(2)过点Ax轴的垂线交x轴于点C.

Rt△AOC中,OC1AC.

由勾股定理,得OA2

∴∠OAC=30°∠AOC60°.

过点Bx轴的垂线交x轴于点D.

由题意,∠AOB30°OBOA2

∴∠BOD30°

Rt△BOD中,得BD1OD

∴B点坐标为(1)

x代入y中,得y1

B(1)在反比例函数y的图象上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,FGAC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4⊙O的半径为

1)分别求出线段APCB的长;

2)如果OE=5,求证:DE⊙O的切线;

3)如果tan∠E=,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为半圆内一点,为圆心,直径长为,,将绕圆心逆时针旋转至,点上,则边扫过区域(图中阴影部分)的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣41),B(﹣23),C(﹣12).

1)画出ABC关于原点O成中心对称的ABC,点ABC分别是点ABC的对应点.

2)求过点B的反比例函数解析式.

3)判断AB的中点P是否在(2)的函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解在校学生对校本课程的喜爱情况,随机调查了九年级学生对ABCDE五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个统计图.

请根据图中所提供的信息,完成下列问题:

1)本次被调查的学生的人数为   

2)补全条形统计图;

3)扇形统计图中,C类所在扇形的圆心角的度数为   

4)若该中学有4000名学生,请估计该校喜爱CD两类校本课程的学生共有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABDCABAD,对角线ACBD交于点OAC平分∠BAD,过点CCEABAB的延长线于点E,连接OE

1)求证:四边形ABCD是菱形;

2)若ABBD2,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙O的半径为rr0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O随心点

1)当⊙O的半径r=2时,A30),B04),C2),D)中,⊙O随心点

2)若点E43)是⊙O随心点,求⊙O的半径r的取值范围;

3)当⊙O的半径r=2时,直线y=- x+bb≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O随心点,直接写出b的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在圆O上,BECD垂足为ECB平分∠ABE,连接BC

1)求证:CD为⊙O的切线;

2)若cosCABCE,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠A=75°,∠C=45°BC=4,点MAC边上的动点,点M关于直线ABBC的对称点分别为PQ,则线段PQ长的取值范围是______

查看答案和解析>>

同步练习册答案