【题目】如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.
(1)若∠A=30°,∠B=50°,求∠ECD的度数;
(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)
【答案】见解析
【解析】试题分析:(1)利用高的定义和互余得到∠BCD=90°-∠B,再根据角平分线定义得到∠BCE=∠ACB,接着根据三角形内角和定理得到∠ACB=180°-∠A-∠B,于是得到∠BCE=90°-(∠A+∠B),然后计算∠BCE-∠BCD得到∠ECD=(∠B-∠A),再把∠A=30°,∠B=50°代入计算即可;
(2)直接由(1)得到结论.
试题解析:(1)∵CD为高,∴∠CDB=90°,
∴∠BCD=90°-∠B,∵CE为角平分线,
∴∠BCE=∠ACB,而∠ACB=180°-∠A-∠B,
∴∠BCE=(180°-∠A-∠B)=90°-(∠A+∠B),
∴∠ECD=∠BCE-∠BCD =90°-(∠A+∠B)-(90°-∠B)=(∠B-∠A),
当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°;
(2)由(1)得∠ECD=(∠B-∠A).
科目:初中数学 来源: 题型:
【题目】某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )
A. 180元 B. 200元 C. 225元 D. 259.2元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费的办法,若某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.
(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;
(2)若某用户该月应交水费42元,则该月用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com