精英家教网 > 初中数学 > 题目详情

【题目】青少年视力水平下降已引起全社会的广泛关注,为了解某市初中毕业年级5 000名学生的视力情况,我们从中抽取了一部分学生的视力作为样本进行数据处理,得到如下的不完整的频数分布表和频数分布直方图:

请根据以上图表信息回答下列问题:

(1)在频数分布表中,a=________,b=________

(2)补全条形统计图;

(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少?

【答案】 60 0.05

【解析】

(1)由频数分布表中在的信息可知:视力在4.0≤x<4.3的人数为20,频率为0.1,由此即可得到被抽查的学生总数为:20÷0.1=200(人),这样由200×0.3可得a,由10÷200可得b;

(2)根据(1)所得a的值,将条形统计图补充完整即可;

(3)根据题意将视力在4.6及以上的三组数据的频率相加,再将所得的和与5000相乘即可得到所求的值.

(1)由频数分布表知,视力在4.0≤x<4.3的人数为20,频率为0.1,

此次调查的总人数为20÷0.1=200

∴a=200×0.3=60,b=10÷200=0.05

(2)由(1)可知a=60,则补全条形统计图如下:

(3)由题意可得5 000(0.35+0.3+0.05)=3500(人).

答:估计全市九年级学生中视力正常的有3500.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC三点在一条直线上,根据图形填空:

1AC   +   +   

2ABAC   

3DB+BC   AD

4)若AC8cmD是线段AC中点,B是线段DC中点,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小茗在一张纸上画一条数轴,并在数轴上标出两个点,点表示的数是,点表示的数是12

1)若数轴上点与点相距3个单位长度,求点所表示的数;

2)将这张纸对折,使点与点刚好重合,折痕与数轴交于点,求点表示的数;

3)点和点同时从初始位置沿数轴向左运动,点的速度是每秒1个单位长度,点的速度是每秒2个单位长度,运动时间是.是否存在的值,使秒后点到原点的距离等于点到原点的距离的两倍?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操场上有一根竖直立在地面上的旗杆,绳子自然下垂到地面还剩余2米,当把绳子拉开8米后,绳子刚好斜着拉直下端接触地面(如图

(1)请根据你的阅读理解,将题目的条件补充完整:如图,RtABC中 C=90°,BC=8米,____________________________.求AC的长.

(2)根据(1)中的条件,求出旗杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

龟兔再次赛跑的路程为1000

兔子和乌龟同时从起点出发;

乌龟在途中休息了10分钟;

兔子在途中750处追上乌龟.

其中正确的说法是   .(把你认为正确说法的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABE△ADC△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为__度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?

大数学家海伦曾用轴对称的方法巧妙的解决了这问题.

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.

请你在下列的阅读、应用的过程中,完成解答.

(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,

∵直线l是点B,B′的对称轴,点C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

归纳小结:

本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).

本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.

(2)模型应用

如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.

解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连接ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是_______

如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是_______

如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求PC+PD的最小值,并写出取得最小值时P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.

(1)根据题意,将下面的表格补充完整.

白纸张数x()

1

2

3

4

5

纸条总长度y(cm)

20

54

71

2)直接写出yx的关系式.

(3)要使粘合后的长方形总面积为1656cm2,则需用多少张这样的白纸?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学课本中,有这样一道题:已知:如(图1),∠B+C=∠BEC求证:ABCD

1)请补充下面证明过程

证明:过点E,做EFAB,如(图2

∴∠B=∠   

∵∠B+C=∠BECBEF+FEC=∠BEC(已知)

∴∠B+C=∠BEF+FEC(等量代换)

∴∠   =∠   (等式性质)

EF   

EFAB

ABCD(平行于同一条直线的两条直线互相平行)

2)请再选用一种方法,加以证明

查看答案和解析>>

同步练习册答案