精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是(

A.AB∥DC,AD=BC
B.AB∥DC,AD∥BC
C.AB=DC,AD=BC
D.OA=OC,OB=OD

【答案】A
【解析】解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;
B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;
C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;
D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;
故选:A.
根据平行四边形的判定定理分别进行分析即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】点A、B在数轴上分别表示实数,A、B两点之间的距离记作AB.

当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=

 当A、B两点都不在原点时:

(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB-OA=

(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB-OA=

(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=

回答下列问题:

(1)综上所述,数轴上A、B两点之间的距离AB= 

(2)数轴上表示2和-4的两点A和B之间的距离AB=    

(3)数轴上表示和-2的两点A和B之间的距离AB=     ,如果AB=2,则的值为    

(4)若代数式有最小值,则最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点(32)关于x轴的对称点为( )

A. 3-2B. -32C. -3-2D. 2-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.

(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1已知AOB120°COD60°OMAOCONBODAOMAOCBONBOD

1COD从图1中的位置绕点O逆时针旋转到OCOB重合时如图2MON °

2COD从图2中的位置绕点O逆时针旋转n°0n120n≠60),MON的度数

3COD从图2中的位置绕点O逆时针旋转n°0n120),n MON2∠BOC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各组线段中,能组成三角形的是(  )

A. 4,6,10 B. 3,6,7 C. 5,6,12 D. 2,3,6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一块试验田的形状如图,已知:∠ABC=90°,AB=4m,BC=3m,AD=12m,CD=13m.求这块试验田的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数a,b满足ab=3,a﹣b=2,则a2b﹣ab2的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,经过点A(-4,4)的抛物线y=ax2+bx+c与x轴相交于点B(-3,0)及原点O.

(1)求抛物线的解析式;

(2)如图1,过点A作AH⊥x轴,垂足为H,平行于y轴的直线交线段AO于点Q,交抛物线于点P,当四边形AHPQ为平行四边形时,求∠AOP的度数;

(3)如图2,若点C在抛物线上,且∠CAO=∠BAO,试探究:在(2)的条件下,是否存在点G,使得△GOP∽△COA?若存在,请求出所有满足条件的点G坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案