精英家教网 > 初中数学 > 题目详情
两个完全相同的矩形铁尺随意放在桌面上(不构成轴对称图形),你能通过轴对称变换使得两把铁尺互相重合吗?如果能,需要变换几次?画图举例说明对称变换的过程;如果不能,简述其理由.
能.
至少变换两次,为叙述方便,把两尺缩为两相等线段AB,CD
(1)连BD,以BD的中垂线l1为轴将CD对称变换至C′B
(2)以∠ABC′的平分线l2为轴将C′B对称边变换至AB即重合.
示意图如下:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明剪了一些直角三角形纸片,他取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.如果∠CAD:∠CDA=1:2,CD=1cm,试求AB的长.
操作二:如图2,小明拿出另一张Rt△ABC纸片,将其折叠,使直角边AC落在斜边AB上,且与AE重合,折痕为AD.已知两直角边AC=6cm,BC=8cm,请你求出CD的长.
操作三:如图3,小明又拿出另一张Rt△ABC纸片,将纸片折叠,折痕CD⊥AB于D.请你说明:BC2+AD2=AC2+BD2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(  )
A.130°B.120°C.110°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,半圆的直径AB长为2,C,D是半圆上的两点,若
AC
的度数为96°,
BD
的度数为36°,动点P在直径AB上,则CP+PD的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,将一组对边平行的纸条沿EF折叠,点A,B分别落在A′,B′处,线段FB′与AD交于点M.
(1)试判断△MEF的形状,并证明你的结论;
(2)如图②,将纸条的另一部分CFMD沿MN折叠,点C,D分别落在C′,D′处,且使MD′经过点F,试判断四边形MNFE的形状,并证明你的结论;
(3)当∠BFE=______度时,四边形MNFE是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰直角三角形ABC的斜边BC的长为8,直线MNBC且与AB、AC分别交于M、N,将△AMN沿直线MN翻折得△A′MN,设△A′MN与△ABC重合部分面积为y,MN=x,
(1)当A′在△ABC内部时,求y与x的函数关系式,并求x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的
1
3
?若存在,求对应的x值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为(  )
A.
4
3
B.
3
5
C.
3
4
D.
4
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明;
(2)若BD=1,CD=2,试求四边形AEMF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为(  )
A.1B.2
2
C.2
3
D.12

查看答案和解析>>

同步练习册答案