精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,二次函数轴于点,交轴于点,在轴上有一点,连接.

(1)求二次函数的表达式;

(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;

(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.

【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为.

【解析】1)把已知点坐标代入函数解析式得出方程组求解即可

2)根据函数解析式设出点D坐标过点DDGxAE于点F表示△ADE的面积运用二次函数分析最值即可

3)设出点P坐标PA=PEPA=AEPE=AE三种情况讨论分析即可.

1∵二次函数y=ax2+bx+c经过点A(﹣40)、B20),C06),

解得

所以二次函数的解析式为y=

2)由A(﹣40),E0,﹣2),可求AE所在直线解析式为y=

过点DDNxAE于点Fx轴于点G过点EEHDF垂足为H如图

Dm),则点Fm),

DF=﹣()=

SADE=SADF+SEDF=×DF×AG+DF×EH

=×DF×AG+×DF×EH

=×4×DF

=2×

=

∴当m=ADE的面积取得最大值为

3y=的对称轴为x=﹣1P(﹣1n),E0,﹣2),A(﹣40),可求PA=PE=AE=分三种情况讨论

PA=PE=解得n=1此时P(﹣11);

PA=AE=解得n=此时点P坐标为(﹣1);

PE=AE=解得n=﹣2此时点P坐标为:(﹣1,﹣2).

综上所述P点的坐标为:(﹣11),(﹣1),(﹣1,﹣2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点是直线上一点,的平分线.

1)当点在直线的同侧,且的内部时(如图1所示 ), ,求的大小;

2)当点与点在直线的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;

3)将图2 中的射线绕点顺时针旋转,得到射线,设,若,则的度数是 (用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车行驶时的耗油量为0.1/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.

(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;

(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列代数式或方程解应用题:

已知小明的年龄是岁,小红的年龄比小明的年龄的倍小岁,小华的年龄比小红的年龄大岁,求这三名同学的年龄的和.

小亮与小明从学校同时出发去看在首都体育馆举行的一场足球赛, 小亮每分钟走,他走到足球场等了分钟比赛才开始:小明每分钟走,他走到足球场,比赛已经开始了分钟.问学校与足球场之间的距离有多远?

请根据图中提供的信息,回答下列问题:

①一个水瓶与一个水杯分别是多少元?

②甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买个水瓶和个水杯,请问选择哪家商场更合算?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10.

(1)甲乙两种图书的售价分别为每本多少元?

(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.

这个几何体可以是图2中甲,乙,丙中的______

这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;

请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请在下面括号里补充完整证明过程:

已知:如图,△ABC中,∠ACB90°AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CDAB.

证明:∵AF平分∠CAB (已知)

1=∠2

∵∠CEF=∠CFE , 又∠3=CEF (对顶角相等)

∴∠CFE=3(等量代换)

∵在△ACF中,∠ACF90°(已知)

∴( +CFE90°

∵∠1=∠2, CFE=3(已证) ∴( + )=90°(等量代换)

在△AED, ADE90°( 三角形内角和定理)

CDAB .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究数轴上任意两点之间的距离与这两点对应的数的关系.

(1)如果点A表示数5,将点A先向左移动4个单位长度到达点B,那么点B表示的数是  ,A、B两点间的距离是  

如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是  ,A、B两点间的距离是 

(2)发现:在数轴上,如果点M对应的数是m,点N对应的数是n,那么点M与点N之间的距离可表示为  (用m、n表示且m≥n).

(3)应用利用你发现的结论解决下列问题:数轴上表示x和﹣2的两点P与Q之间的距离是3,则x=  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1与哪个角是内错角,∠2与哪个角是同旁内角,他们分别是哪两条直线被哪条直线所截.

查看答案和解析>>

同步练习册答案