精英家教网 > 初中数学 > 题目详情

【题目】探究数轴上任意两点之间的距离与这两点对应的数的关系.

(1)如果点A表示数5,将点A先向左移动4个单位长度到达点B,那么点B表示的数是  ,A、B两点间的距离是  

如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是  ,A、B两点间的距离是 

(2)发现:在数轴上,如果点M对应的数是m,点N对应的数是n,那么点M与点N之间的距离可表示为  (用m、n表示且m≥n).

(3)应用利用你发现的结论解决下列问题:数轴上表示x和﹣2的两点P与Q之间的距离是3,则x=  

【答案】(1)1, 4 ; 3, 5;(2)m﹣n;(3)1 ,﹣5.

【解析】

由题意得

如果点A表示数5,点B表示的数是5-4=1,A、B两点间的距离是5-(1)=4;

如果点A表示数﹣2,点B表示的数是-2+5=3,A、B两点间的距离是3-(-1)=5;

(2)由m≥n,可得M与点N之间的距离可表示为mn;

(3)x-2左侧与右侧两种情况,由(2)的公式可得x的值..

: 由题意得

(1)如果点A表示数5,点B表示的数是5-4=1,A、B两点间的距离是5-(1)=4;

如果点A表示数﹣2,点B表示的数是-2+5=3,A、B两点间的距离是3-(-1)=5;

(2)由点M对应的数是m,点N对应的数是n,且m≥n,可得M与点N之间的距离可表示为mn;

(3)①当x-2左侧,可得-2-x=3,可得x=-5;

②当x-2左侧,可得x-(-2)=3,x=1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)如图,以△ABC的边ABAC向外作正方形ABDE和正方形ACFG,试判断△ABC△AEG面积之间的关系,并说明理由。

2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数轴于点,交轴于点,在轴上有一点,连接.

(1)求二次函数的表达式;

(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;

(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,AD是△ABC的中线.△ABD与△ACD的面积有怎样的数量关系?为什么?

(2)若三角形的面积记为S,例如:△ABC的面积记为SABC.如图②,已知SABC1.△ABC的中线ADCE相交于点O,求四边形BDOE的面积.

小华利用(1)的结论,解决了上述问题,解法如下:

连接BO,设SBEOxSBDOy,由(1)结论可得:SBCESBADSABCSBCO2SBDO2ySBAO2SBEO2x.则有所以xy.即四边形BDOE面积为

请仿照上面的方法,解决下列问题:

①如图③,已知SABC1DEBC边上的三等分点,FGAB边上的三等分点,ADCF交于点O,求四边形BDOF的面积.

②如图④,已知SABC1DEFBC边上的四等分点,GHIAB边上的四等分点,ADCG交于点O,则四边形BDOG的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实党中央提出的惠民政策,我市今年计划开发建设A、B两种户型的廉租房40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A廉租房的造价为5.2万元,一套B廉租房的造价为4.8万元.

(1)请问有几种开发建设方案?

(2)哪种建设方案投入资金最少?最少资金是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某初中对 600 名毕业生中考体育测试坐位体前屈成绩进行整理,绘制成 如下不完整的统计图:

根据统计图,回答下列问题。

(1)请将条形统计图补充完整;

(2)扇形统计图中,b= ,得 8 分所对应扇形的圆心角度数为 ;

(3)在本次调查的学生中,随机抽取 1 名男生,他的成绩不低于 9 分的概率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据材料,解答问题

如图,数轴上有点,对应的数分别是6-44-1,则两点间的距离为两点间的距离为两点间的距离为;由此,若数轴上任意两点分别表示的数是,则两点间的距离可表示为反之,表示有理数在数轴上的对应点之间的距离,称之为绝对值的几何意义

问题应用1

1)如果表示-1的点和表示的点之间的距离是2,则点对应的的值为___________

2)方程的解____________

3)方程的解______________

问题应用2

如图,若数轴上表示的点为.

4的几何意义是数轴上_____________,当__________的值最小是____________

5的几何意义是数轴上_______的最小值是__________,此时点在数轴上应位于__________上;

6)根据以上推理方法可求的最小值是___________,此时__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知Rt△ABC,∠C=90°,AB=10,且cosA=. M为线段AB的中点, 作DM⊥AB交AC于D. 点Q在线段AC上,点P在线段BC上,以PQ为直径的圆始终过点M, 且PQ交线段DM于点E.

⑴ 试说明△AMQ∽△PME;

⑵ 当△PME是等腰三角形时,求出线段AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一面靠墙的空地上用长为24 m的篱笆围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.

(1)求S与x的函数关系式及自变量的取值范围;

(2)已知墙的最大可用长度为8 m,

①求所围成花圃的最大面积;

②若所围花圃的面积不小于20 m2,请直接写出x的取值范围.

查看答案和解析>>

同步练习册答案