精英家教网 > 初中数学 > 题目详情

【题目】探究证明:

(1)如图1,在ABC中,AB=AC,点E是BC上的一个动点,EGAB,EFAC,CDAB,点G,F,D分别是垂足.求证:CD=EG+EF;

猜想探究:

(2)如图2,在ABC中,AB=AC,点E是BC的延长线上的一个动点,EGAB于G,EFAC交AC延长线于F,CDAB于D,直接猜想CD、EG、EF之间的关系为 CD=EG﹣EF

问题解决:

(3)如图3,边长为10的正方形ABCD的对角线相交于点O、H在BD上,且BH=BC,连接CH,点E是CH上一点,EFBD于点F,EGBC于点G,则EF+EG=

【答案】(1)证明见解析

(2)CD=EG﹣EF,

(3)5

【解析】

试题分析:(1)根据SABC=SABE+SACE,得到ABCD=ABEG+ACEF,根据等式的性质即可得到结论;

(2)由于SABC=SABE﹣SACE,于是得到ABCD=ABEG﹣ACEF,根据等式的性质即可得到结论;

(3)根据正方形的性质得到AB=BC=10,ABC=90°,ACBD,根据勾股定理得到AC=10,由于SBCH=SBCE+SBHE,得到BHOC=BCEG+BHEF,根据等式的性质即可得到结论.

试题解析:(1)如图1,连接AE,

EGAB,EFAC,CDAB,

SABC=SABE+SACE

ABCD=ABEG+ACEF,

AB=AC,

CD=EG+EF;

(2)CD=EG﹣EF,

理由:连接AE,

EGAB,EFAC,CDAB,

SABC=SABE﹣SACE

ABCD=ABEG﹣ACEF,

AB=AC,

CD=EG﹣EF;

故答案为:CD=EG﹣EF;

(3)四边形ABCD是正方形,

AB=BC=10,ABC=90°,ACBD,

AC=10

OC=AC=5

连接BE.

EFBD于点F,EGBC于点G,

SBCH=SBCE+SBHE

BHOC=BCEG+BHEF,

OC=EG+EF=5

故答案为:5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板如图两种方法裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有38张硬纸板,裁剪时x张用A方法,其余用B方法。

1)用x的代数式分别表示裁剪出的侧面和底面的个数;

2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10分)

【感受联系】在初二的数学学习中,我们感受过等腰三角形与直角三角形的密切联系.等腰三角形作底边上的高线可转化为直角三角形,直角三角形沿直角边翻折可得到等腰三角形等等.

【探究发现】某同学运用这一联系,发现了“30°角所对的直角边等于斜边的一半”.并给出了如下的部分探究过程,请你补充完整证明过程

已知:如图,在中, °,°.

求证:

证明:

【灵活运用】该同学家有一张折叠方桌如图①所示,方桌的主视图如图②.经测得 ,将桌子放平,两条桌腿叉开的角度.

求:桌面与地面的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列方程的特征及其解的特点.

x=-3的解为x1=-1x2=-2

x=-5的解为x1=-2x2=-3

x=-7的解为x1=-3x2=-4.

解答下列问题:

(1)请你写出一个符合上述特征的方程为____________,其解为x1=-4x2=-5

(2)根据这类方程特征,写出第n个方程为________________,其解为x1=-nx2=-n1

(3)请利用(2)的结论,求关于x的方程x=-2(n2)(其中n为正整数)的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BD为ABC的的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EFAB,F为垂足下列结论①△ABD≌△EBC;②∠BCE+BCD=180°;AD=AE=EC;BA+BC=2BF其中正确的是

A①②③ B①③④ C①②④ D①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;②

(2)请计算甲六次测试成绩的方差;

(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:

(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B类所对应扇形圆心角的度数为 度,请补全条形统计图;

(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°, AD平分∠BACBCDDEABE

求证:(1ACD≌△AED;(2)若AB=6,求DEB的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:如图1,点EF分别在正方形ABCD的边BCCD上,EAF=45°,连接EF,则EFBEDF,试说明理由.

(1)思路梳理

ABCD

ABE绕点A逆时针旋转90°ADG,可使ABAD重合.

∵∠ADCB=90°

∴∠FDG=180°,点FDG共线.

根据___________,SAS

易证AFG___________AEF

,得EFBEDF

(2)类比引申

如图2,四边形ABCD中,ABADBAD=90°.点EF分别在边BCCD上,EAF=45°.若BD都不是直角,则当BD满足等量关系______________B+D=180°

时,仍有EFBEDF

(3)联想拓展

如图3,在ABC中,BAC=90°ABAC,点DE均在边BC上,且DAE=45°.猜想BDDEEC应满足的等量关系,并写出推理过程.

查看答案和解析>>

同步练习册答案