精英家教网 > 初中数学 > 题目详情

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;②

(2)请计算甲六次测试成绩的方差;

(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.

【答案】(1)9,9;(2)(3)推荐甲参加比赛合适.

【解析】

试题分析:(1)根据中位数的定义先把这组数据从小到大排列,再找出最中间两个数的平均数即可求出①;根据平均数的计算公式即可求出②;

(2)根据方差的计算公式S2=[(x12+(x22+…+(xn2]代值计算即可;

(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.

解:(1)甲的中位数是:=9;

乙的平均数是:(10+7+10+10+9+8)÷6=9;

故答案为:9,9;

(2)S2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=

(3)=,S2<S2

推荐甲参加比赛合适.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于0,1以及真分数p,q,r,若p<q<r,我们称qpr的中间分数.为了帮助我们找中间分数,制作了下表:

两个不等的正分数有无数多个中间分数.例如:上表中第行中的3个分数,有,所以的一个中间分数,在表中还可以找到的中间分数 .把这个表一直写下去,可以找到更多的中间分数.

(1)按上表的排列规律,完成下面的填空:

上表中括号内应填的数为

如果把上面的表一直写下去,那么表中第一个出现的的中间分数是

2)写出分数abcd均为正整数, )的一个中间分数(用含abcd的式子表示),并证明;

3)若mns t均为正整数)都是的中间分数,则的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,正方形ABCD与正方形CEFH如图放置,连接DEBH,两线交于M,求证:

(1)BHDE

(2)BHDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,(1)已知∠ABC,射线EDAB,过点E作∠DEF=∠ABC,试说明BCEF

(2)如图②,已知∠ABC,射线EDAB,∠ABC+∠DEF=180°.判断直线BC与直线EF的位置关系,并说明理由;

(3)根据以上探究,你发现了一个什么结论?请你写出来;

(4)如图③,已知ACBCCDABDEACHFAB,若∠1=48°,试求∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究证明:

(1)如图1,在ABC中,AB=AC,点E是BC上的一个动点,EGAB,EFAC,CDAB,点G,F,D分别是垂足.求证:CD=EG+EF;

猜想探究:

(2)如图2,在ABC中,AB=AC,点E是BC的延长线上的一个动点,EGAB于G,EFAC交AC延长线于F,CDAB于D,直接猜想CD、EG、EF之间的关系为 CD=EG﹣EF

问题解决:

(3)如图3,边长为10的正方形ABCD的对角线相交于点O、H在BD上,且BH=BC,连接CH,点E是CH上一点,EFBD于点F,EGBC于点G,则EF+EG=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表所示为装运、销售甲、乙、丙三种蔬菜的重量及利润。某公司计划用20辆汽车装运甲、乙、丙三种蔬菜共36吨到某地销售.规定每辆汽车满载,每车只装一种蔬菜,每种蔬菜不少于一车。应如何安排,可使公司获得利润18300?

每辆汽车装运的吨数

2

1

1.5

每吨蔬菜可获利润(百元)

5

7

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.

(1)求反比例函数和一次函数的表达式;

(2)求△AOB的面积;

(3)若D(x,0)是x轴上原点左侧的一点,且满足kxb<0,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家规定个人发表文章、出版图书获得稿费的纳税计算方法是:(l)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的,减除其中的800元,其余部分按20%纳税:(3)稿费高于4000元,减除稿酬的20%,其余部分按20%纳税.今知丁老师获得一笔稿费,并缴纳个人所得税600元,问:丁老师的这笔稿费有多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:

由于a≠0,方程ax2+bx+c=0变形为:

x2+x=﹣,…第一步

x2+x+(2=﹣+(2,…第二步

(x+2=,…第三步

x+=(b2﹣4ac>0),…第四步

x=,…第五步

嘉淇的解法从第  步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是  

用配方法解方程:x2﹣2x﹣24=0.

查看答案和解析>>

同步练习册答案