【题目】对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:
两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数、、,有,所以为和的一个中间分数,在表中还可以找到和的中间分数, , , .把这个表一直写下去,可以找到和更多的中间分数.
(1)按上表的排列规律,完成下面的填空:
①上表中括号内应填的数为 ;
②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是 ;
(2)写出分数和(a、b、c、d均为正整数, , )的一个中间分数(用含a、b、c、d的式子表示),并证明;
(3)若与(m、n、s、 t均为正整数)都是和的中间分数,则的最小值为 .
【答案】(1)①;②(2)证明见解析(3)1504
【解析】试题分析:(1)①观察每一行的规律可得括号位于第⑦行,按表格中的规律可知是;
②观察表格可知第一个出现的和的中间分数在第⑧行,是;
(2)答案不唯一,根据表格中观察到的,可以为,通过推导证明即可得;
(3)根据排列可知和的中间分数有, , , 等,由此可得.
试题解析:(1)①观察每一行的规律可得括号位于第⑦行,按分子的排序可知是,
②观察表格可知第一个出现的和的中间分数在第⑧行,是,
故答案为:①;②.
(2)本题结论不唯一,证法不唯一,如:
结论: .
∵a、b、c、d均为正整数, , ,
∴,
.
∴.
(3)根据排列可知和的中间分数有, , , 等,由此可得mn的最小值为1504,
故答案为:1504.
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1)请你判断DA与CE的位置关系,并说明理由;
(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有足够多的长方形和正方形卡片,如图.
(1)如图,如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.
这个长方形的代数意义是______________;
(2)小明想用类似方法解释多项式乘法.
那么需用2号卡片_________张,3号卡片_____________张.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板如图两种方法裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有38张硬纸板,裁剪时x张用A方法,其余用B方法。
(1)用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点D在AC上,且AD=AB,AK平分∠CAB,交线段BE于点F,交边CB于点K.
(1)在图中找出一对全等三角形,并证明;
(2)求证:FD∥BC .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线。
(1)判断∠AOB与∠COD有怎样的数量关系,为什么?
(2)若∠AOD=∠BOC,AB、CD有怎样的位置关系,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线BE、CF相交于点P.
(1)若∠ABC=70°,∠ACB=50°,则∠BPC= °;
(2)求证:∠BPC=180°﹣(∠ABC+∠ACB);
(3)若∠A=α,求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com