精英家教网 > 初中数学 > 题目详情

【题目】如图,AOBOCODO分别是四边形ABCD的四个内角的平分线。

(1)判断∠AOB与∠COD有怎样的数量关系,为什么?

(2)若∠AOD=∠BOCABCD有怎样的位置关系,为什么?

【答案】(1)∠AOB+∠COD=180°,理由见解析;(2)AB∥CD,理由见解析

【解析】试题分析:(1)本题考查的是角平分线的性质;(2)本题利用角平分线的性质和平行线的判定解决即可.

试题解析:

(1)∠AOB+∠COD=180°

因为:过点O分别作OE⊥AB,OF⊥BC,OG⊥CD,OH⊥AD,∵AOBOCODO分别是四边形ABCD的四个内角的平分线∴OE=OF=OG=OH,∴∠AOH=∠AOE, ∠BOF=∠BOE, ∠COF=∠COG, ∠DOG=∠HOD,∴∠AOE+∠BOE+∠COG+∠DOG=∠AOH+∠BOF+ ∠COF+∠HOD,∴∠AOB+∠COD=180°;

(2)AB∥CD.

1∠AOB+∠COD=180°∴∠COB+∠AOD=180°,∵∠AOD=∠BOC∴∠AOD=90°∴∠2+∠3=90°∵∠1=∠2∠3=∠4∴∠1+∠2+∠3+∠4=180°∴AB∥CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,正比例函数ykx的图象与反比例函数的图象有一个交点为A(m2)

(1)m的值及正比例函数ykx的表达式;

(2)试判断点B(23)是否在正比例函数图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次物理竞赛中,有一道四选二的双项选择题,评分标准是:多选或只要选错一项就不得分,只选一项且对得1,全对得3.

(1)小娟在不会做的情况下,根据题意决定任选一项作为答案,求她得到1分的概率.

(2)小娜在不会做的情况下,根据题意决定任选两项作答案,用列表法表示小娜答案的所有可能结果,并求她得到3分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于0,1以及真分数p,q,r,若p<q<r,我们称qpr的中间分数.为了帮助我们找中间分数,制作了下表:

两个不等的正分数有无数多个中间分数.例如:上表中第行中的3个分数,有,所以的一个中间分数,在表中还可以找到的中间分数 .把这个表一直写下去,可以找到更多的中间分数.

(1)按上表的排列规律,完成下面的填空:

上表中括号内应填的数为

如果把上面的表一直写下去,那么表中第一个出现的的中间分数是

2)写出分数abcd均为正整数, )的一个中间分数(用含abcd的式子表示),并证明;

3)若mns t均为正整数)都是的中间分数,则的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°AB=AC=4cm,若OBC的中点,动点MAB移动,动点NAC上移动,且AN=BM

1)证明:OM = ON

2)四边形AMON面积是否发生变化,若发生变化说明理由;若不变,请你求出四边形AMON的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(EF最长可利用28),围成一个矩形花园ABCD.与墙平行的一边BC上要预留2米宽的入口(如图中MN所示,不用砌墙).现有砌60米长的墙的材料.

(1)当矩形的长BC为多少米时,矩形花园的面积为300平方米;

(2)能否围成480平方米的矩形花园,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(ABCD四个顶点正好重合于底面上一点).已知EFAB边上,是被剪去一个等腰直角三角形斜边的两个端点,设AEBFxcm.

(1)若折成的包装盒恰好是正方体,试求这个包装盒的体积V

(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,正方形ABCD与正方形CEFH如图放置,连接DEBH,两线交于M,求证:

(1)BHDE

(2)BHDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.

(1)求反比例函数和一次函数的表达式;

(2)求△AOB的面积;

(3)若D(x,0)是x轴上原点左侧的一点,且满足kxb<0,求x的取值范围.

查看答案和解析>>

同步练习册答案