| A. | (8,6) | B. | (7,7) | C. | (7$\sqrt{2}$,7$\sqrt{2}$) | D. | (5$\sqrt{2}$,5$\sqrt{2}$) |
分析 作PH⊥x轴于H,连结PA、PB,由A、B两点的坐标可求出AB,由△PAB和△POH都为等腰直角三角形,得出PA=$\frac{\sqrt{2}}{2}$AB,PH=OH,设OH=t,在在Rt△PHA中,运用勾股定理求出t的值,即可得出点P的坐标.
解答
解:如图,作PH⊥x轴于H,连结PA、PB,
∵∠AOB=90°,
∴AB为△AOB外接圆的直径,
∴∠BPA=90°,
∵A、B两点的坐标分别为(8,0)、(0,6),
∴OA=8,OB=6,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=10,
∵∠AOP=45°,
∴∠ABP=45°,
∴△PAB和△POH都为等腰直角三角形,
∴PA=$\frac{\sqrt{2}}{2}$AB=5$\sqrt{2}$,PH=OH,
设OH=t,则PH=t,AH=8-t,
在Rt△PHA中,
∵PH2+AH2=PA2,即t2+(8-t)2=(5$\sqrt{2}$)2,
解得t1=7,t2=1(舍去),
∴P点坐标为(7,7).
故选B.
点评 本题考查的是圆周角定理及等腰直角三角形的性质,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{10}}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com