精英家教网 > 初中数学 > 题目详情

【题目】如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为 上一点,且 = ,连接CM,交AB于点E,交AN于点F,现给出以下结论: ①AD=BD;②∠MAN=90°;③ = ;④∠ACM+∠ANM=∠MOB;⑤AE= MF.
其中正确结论的个数是(

A.2
B.3
C.4
D.5

【答案】D
【解析】解:∵MN是⊙O的直径,AB⊥MN, ∴AD=BD, = ,∠MAN=90°(①②③正确)
=
= =
∴∠ACM+∠ANM=∠MOB(④正确)
∵∠MAE=∠AME,
∴AE=ME,∠EAF=∠AFM,
∴AE=EF,
∴AE= MF(⑤正确).
正确的结论共5个.
故选:D.
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对圆周角定理的理解,了解顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如表:

x

﹣2

﹣1

0

1

2

3

y

0

4

6

6

4

0


(1)求这个二次函数的表达式;
(2)直接写出当y<0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D.

(1)求证:CD=CB;
(2)如果⊙O的半径为 ,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BC2AB4,点EF分别是BCAD的中点.

(1)求证:△ABE≌△CDF

(2)当四边形AECF为菱形时,求出该菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABCD在同一条直线上,点EF分别在直线AD的两侧,且AE=DF∠A=∠DAB=DC

1)求证:四边形BFCE是平行四边形;

2)若AD=10DC=3∠EBD=60°,则BE= 时,四边形BFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,画一个长和宽分别为的长方形,并将其按一定的方式进行旋转.

你能得到几种不同的圆柱体?

把一个平面图形旋转成几何体,必须明确哪两个条件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCDEF中,已知AB=DE,A=D,若要得到ABC≌△DEF,则还要补充一个条件,在下列补充方法:①AC=DF;②∠B=E;③∠B=F;④∠C=F BC=EF中,则错误结论的序号是__________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、BCD的平分线交于点O1称为第1次操作,作∠O1DC、O1CD的平分线交于点O2称为第2次操作,作∠O2DC、O2CD的平分线交于点O3称为第3次操作,,则第5次操作后∠CO5D的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,CE、CF分别是ABC的内外角平分线,过点ACE、CF的垂线,垂足分别为E、F.

(1)求证:四边形AECF是矩形;

(2)当ABC满足什么条件时,四边形AECF是正方形?

查看答案和解析>>

同步练习册答案